留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于压力驱动多液滴浸润状态响应调控

陈聪 蓝鼎 王进

陈聪, 蓝鼎, 王进. 基于压力驱动多液滴浸润状态响应调控[J]. 空间科学学报, 2023, 43(5): 883-889. doi: 10.11728/cjss2023.05.2023-yg10
引用本文: 陈聪, 蓝鼎, 王进. 基于压力驱动多液滴浸润状态响应调控[J]. 空间科学学报, 2023, 43(5): 883-889. doi: 10.11728/cjss2023.05.2023-yg10
CHEN Cong, LAN Ding, WANG Jin. Research on Response Regulation of Pressure-driven Multi-droplet Wetting State (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 883-889 doi: 10.11728/cjss2023.05.2023-yg10
Citation: CHEN Cong, LAN Ding, WANG Jin. Research on Response Regulation of Pressure-driven Multi-droplet Wetting State (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 883-889 doi: 10.11728/cjss2023.05.2023-yg10

基于压力驱动多液滴浸润状态响应调控

doi: 10.11728/cjss2023.05.2023-yg10 cstr: 32142.14.cjss2023.05.2023-yg10
基金项目: 国家重点研发计划项目资助(2022YFF0503500)
详细信息
    作者简介:
    通讯作者:
  • 中图分类号: V524

Research on Response Regulation of Pressure-driven Multi-droplet Wetting State

  • 摘要: 液液界面浸润性可控操作的实现,在界面纳米有序结构组装、液体透镜调节、航空航天等方面具有重要意义。从宏观尺度研究了以表面活性剂溶液为底液的液液界面浸润问题,进行以表面活性剂溶液为底液、正十六烷为操控对象的浸润可控调节研究,分析界面单层活性剂分子在液体动态浸润性变化过程中的内在机理,选择固定浓度的表面活性剂溶液,以此匹配最佳的正十六烷铺展状态。通过拉压驱动液面的方式改变液滴铺展状态:挡板拉伸时,每个液滴浸润面积增大,并产生液滴形变;挡板压缩后,浸润面积减小,恢复圆环形状。实现了浸润状态的动态响应。通过拉压,实现了对单液滴的铺展–收缩的控制,在单液滴的基础上实现了双液滴、三液滴浸润状态的协同。

     

  • 图  1  实验装置及基本光路

    Figure  1.  Experimental setup and basic optical path

    图  2  两挡板拉–压双液滴实验过程。(a)~(c)为拉伸过程;(c)~(e)为压缩过程

    Figure  2.  Experimental process diagram of two baffle pull-pressure double droplets. (a)~(c) Stretching process, (c)~(e) compression process

    图  3  双液滴拉压周期实验铺展直径与挡板间距随时间的变化

    Figure  3.  Double droplet pull-compression cycle experiment with spread diameter and baffle spacing over time

    图  4  双液滴拉伸过程液滴直径与时间的标度关系

    Figure  4.  Relationship between droplet diameter and time scale in double droplet drawing process

    图  5  三液滴不同速度拉压实验过程。(a)~(c)为拉伸过程,(c)~(e)为压缩过程

    Figure  5.  Experimental process diagram of three droplets with different speed tensions and compressions. (a)~(c) stretching process, (c)~(e) compression process

    图  6  三液滴拉压过程液滴直径与挡板间距随时间的变化关系

    Figure  6.  Relationship between droplet diameter and baffle spacing in the process of droplet pulling and compression

    图  7  三液滴拉伸过程液滴直径与时间标度关系(D1为与挡板运动方向平行直径,D2为与挡板运动方向垂直直径)

    Figure  7.  Relationships between droplet diameter and time scale in three-droplet drawing processes (D1 is the diameter parallel to the direction of baffle movement, D2 is the diameter perpendicular to the direction of baffle movement)

    图  8  三液滴拉压实验中间液滴直径与时间的标度关系

    Figure  8.  Relationship between droplet diameter and time scale in the three-droplet pull-pressure experiment

    图  9  多液滴拉压驱动铺展

    Figure  9.  Multi-droplet pull-pressure drive spreading

  • [1] CONCUS P, FINN R. On capillary free surfaces in the absence of gravity[J]. Acta Math., 1974, 132: 177-198 doi: 10.1007/BF02392113
    [2] 陈凡红. 固体表面气/液浸润及相关电化学行为研究[D]. 北京: 北京化工大学, 2020

    CHEN Fanhong. Wetting of gas/liquid on solid surfaces and related electrochemical behaviors[D]. Beijing: Beijing University of Chemical Technology, 2020
    [3] JI W J, LI W B, WANG Y R, et al. Tunable spreading and shrinking on photocontrolled liquid substrate[J]. ACS Omega, 2019, 4(26): 21967-21974 doi: 10.1021/acsomega.9b03039
    [4] WILKINSON K M, BAIN C D, MATSUBARA H, et al. Wetting of surfactant solutions by alkanes[J]. Chem. Phys. Chem., 2005, 6(3): 547-555 doi: 10.1002/cphc.200400514
    [5] BROCHARD-WYART F, DI MEGLIO J M, QUERE D, et al. Spreading of nonvolatile liquids in a continuum picture[J]. Langmuir, 1991, 7(2): 335-338 doi: 10.1021/la00050a023
    [6] BONN D, ROSS D. Wetting transitions[J]. Reports on Progress in Physics, 2001, 64(9): 1085-1163 doi: 10.1088/0034-4885/64/9/202
    [7] XU X H, ZHENG H X, LIU Y, et al. A droplet-based electricity generator with high instantaneous power density[J]. Nature, 2020, 578(7795): 392-396 doi: 10.1038/s41586-020-1985-6
    [8] LANDT E, VOLMER M. Über die ausbreitungsgeschwindigkeit von Öl auf wasser[J]. Zeitschrift für Physikalische Chemie, 1926, 122U(1): 398-404
    [9] HOULT D P. Oil spreading on the sea[J]. Annual Review of Fluid Mechanics, 1972, 4: 341-368 doi: 10.1146/annurev.fl.04.010172.002013
    [10] 陈聪, 王进, 纪文杰, 等. 表面活性剂溶液界面拉压驱动液滴浸润性响应[J]. 力学与实践, 2023, 45(1): 67-74

    CHEN Cong, WANG Jin, JI Wenjie, et al. Response of the droplet wettability driven by interfacial tension of surfactant solution[J]. Mechanics in Engineering, 2023, 45(1): 67-74
  • 加载中
图(9)
计量
  • 文章访问数:  184
  • HTML全文浏览量:  139
  • PDF下载量:  29
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-06-24
  • 修回日期:  2023-09-03
  • 网络出版日期:  2023-10-14

目录

    /

    返回文章
    返回