留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重力跳变引起的贮箱内气液界面波传播规律

魏列 杜王芳 薛子扬 何发龙 李凯 赵建福

魏列, 杜王芳, 薛子扬, 何发龙, 李凯, 赵建福. 重力跳变引起的贮箱内气液界面波传播规律[J]. 空间科学学报, 2023, 43(5): 875-882. doi: 10.11728/cjss2023.05.2023-yg12
引用本文: 魏列, 杜王芳, 薛子扬, 何发龙, 李凯, 赵建福. 重力跳变引起的贮箱内气液界面波传播规律[J]. 空间科学学报, 2023, 43(5): 875-882. doi: 10.11728/cjss2023.05.2023-yg12
WEI Lie, DU Wangfang, XUE Ziyang, HE Falong, LI Kai, ZHAO Jianfu. Wave Propagation Law at the Gas-liquid Interface in a Storage Tank Due to Gravity Jumps (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 875-882 doi: 10.11728/cjss2023.05.2023-yg12
Citation: WEI Lie, DU Wangfang, XUE Ziyang, HE Falong, LI Kai, ZHAO Jianfu. Wave Propagation Law at the Gas-liquid Interface in a Storage Tank Due to Gravity Jumps (in Chinese). Chinese Journal of Space Science, 2023, 43(5): 875-882 doi: 10.11728/cjss2023.05.2023-yg12

重力跳变引起的贮箱内气液界面波传播规律

doi: 10.11728/cjss2023.05.2023-yg12 cstr: 32142.14.cjss2023.05.2023-yg12
基金项目: 国家重点研发计划项目资助(2022YFF0503502)
详细信息
    作者简介:
    通讯作者:
  • 中图分类号: O359.1,V448.21

Wave Propagation Law at the Gas-liquid Interface in a Storage Tank Due to Gravity Jumps

  • 摘要: 随着航天技术的进步,航天任务复杂性的不断提高,对液体火箭发动机多次关机重启的要求日益普遍,相应地对推进剂管理系统的要求也越来越严格。关机滑行期间,贮箱内重力水平减弱,毛细力开始成为主导作用力,液体推进剂在毛细力的作用下可能脱离排液口,使得供给发动机的推进剂夹气,导致点火失败。为了确保发动机在经历自由滑行后能顺利重启,就必须考虑贮箱内气液界面如何响应重力和加速度水平改变的问题。针对常用构型和尺寸的空间贮箱,数值模拟了不同Bo数下气液界面波的传播,研究了不同Bo数下界面波传播的机制,发现了贮箱内界面波的传播速度随着Bo数的增加而增大,并得到Bo数从1~5000范围内描述界面波传播规律的Fr数与Bo数之间的标度关系。

     

  • 图  1  空间推进剂贮箱构型

    Figure  1.  Space propellant tank configuration

    图  2  Bo=200时初始界面波的移动(虚线箭头表示近壁波谷)

    Figure  2.  Displacement of the main wave trough at Bo = 200 (Dashed arrow indicates near-wall troughs)

    图  3  不同Bo数下初始波谷位置的变化

    Figure  3.  Movement of the initial trough of interface wave under different values of the Bond number

    图  4  不同Bo数下界面波的无量纲传播速度变化情况

    Figure  4.  Change of the dimensionless propagation velocity of the interface wave under different values of the Bond number

    图  5  不同Bo数下界面波自由传播的无量纲终止时刻

    Figure  5.  Dimensionless termination moments of free propagation of interface waves for different Bo numbers

    图  6  不同Bo数下界面波自由传播的无量纲初始时刻

    Figure  6.  Dimensionless initial moments of free propagation of interface waves for different Bo numbers

    图  7  Fr数与Bo数之间的标度关系

    Figure  7.  Scaling relationship between the Fr number and Bo numbers

    表  1  气液两相流体物性参数

    Table  1.   Material parameters of the gas and liquid phases

    Fluid materialsHelium (Gas)Oxygen (Liquid)
    Density/(kg·m–3) 1.230 1200
    Dynamic viscosity/(μPa·s) 8.385 279.1
    Surface tension/(N·m–1) 0.0162
    Contact angle/(°) 10
    下载: 导出CSV
  • [1] KARTUZOVA O V, KASSEMI M. CFD jet mixing model validation against Zero-Boil-Off tank (ZBOT) microgravity experiment[C]//Proceedings of the AIAA Propulsion and Energy 2019 Forum. Indianapolis: American Institute of Aeronautics and Astronautics, 2019
    [2] 郭斌, 赵建福, 李凯, 等. 零重力条件下低温射流抑制大尺寸液氢储罐热分层的数值研究[J]. 力学学报, 2021, 53(4): 1170-1182 doi: 10.6052/0459-1879-20-343

    GUO Bin, ZHAO Jianfu, LI Kai, et al. Numerical study on thermal destratification in large scale hydrogen propellant tank in space by jet injection under zero gravity condition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(4): 1170-1182 doi: 10.6052/0459-1879-20-343
    [3] LI J C, GUO B, ZHAO J F, et al. On the space thermal destratification in a partially filled hydrogen propellant tank by jet injection[J]. Microgravity Science and Technology, 2022, 34(1): 6 doi: 10.1007/s12217-021-09923-2
    [4] 肖立明, 李欣, 胡声超, 等. 微重力条件下上面级贮箱液体推进剂自由界面变形数值模拟研究[J]. 航天器环境工程, 2020, 37(2): 115-119 doi: 10.12126/see.2020.02.002

    XIAO Liming, LI Xin, HU Shengchao, et al. Numerical simulation of free interface deformation of liquid propellant in upper stage tank under microgravity condition[J]. Spacecraft Environment Engineering, 2020, 37(2): 115-119 doi: 10.12126/see.2020.02.002
    [5] MASICA W J, PETRASH D A. Motion of Liquid-Vapor Interface in Response to Imposed Acceleration[R]. Washington: NASA, 1965
    [6] MASICA W J, PETRASH D A, OTTO E W. Hydrostatic Stability of the Liquid-Vapor Interface in a Gravitational Field[R]. Washington: NASA, 1964
    [7] MASICA W J, DERDUL J D, PETRASH D A. Hydrostatic Stability of the Liquid-Vapor Interface in A Low-Acceleration Field[R]. Washington: NASA, 1964
    [8] BRETHERTON F P. The motion of long bubbles in tubes[J]. Journal of Fluid Mechanics, 1961, 10(2): 166-188 doi: 10.1017/S0022112061000160
    [9] GLUCK D F, GILLE J P. Fluid mechanics of zero-G propellant transfer in spacecraft propulsion systems[J]. Journal of Engineering for Industry, 1965, 87(1): 1-8 doi: 10.1115/1.3670751
    [10] ABRAMSON H N. The Dynamic Behavior of Liquids in Moving Containers[R]. Washington: NASA, 1966
    [11] WEISLOGE M M, HSIEH K C. Stability of Capillary Surfaces in Rectangular Containers: The Right Square Cylinder[R]. Washington: NASA, 1998
    [12] DAVIES R M, TAYLOR G I. The mechanics of large bubbles rising through extended liquids and through liquids in tubes[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 1950, 200(1062): 375-390
    [13] BERRY R L, TEGART J R. Experimental Study of Transient Liquid Motion in Orbiting Spacecraft[R]. Washington: NASA, 1975
    [14] LABUS T L, MASICA W J. Liquid Reorientation in Spheres by Means of Low-G Accelerations[R]. Washington: NASA, 1968
    [15] SALZMAN J A, MASICA W J. Experimental Investigation of Liquid-Propellant Reorientation[R]. Washington: NASA, 1967
    [16] SALZMAN J A, MASICA W J, LACOVIC R F. Low Gravity Reorientation in A Scale-Model Centaur Liquid-Hydrogen Tank[R]. Washington: NASA, 1973
    [17] HOCHSTEIN J I, PATAG A E, CHATO D J. Modeling of Impulsive Propellant Reorientation[R]. Washington: NASA, 1989
    [18] PATAG A E, HOCHSTEIN J I, CHATO D J. Modeling of pulsed propellant reorientation[C]//Proceedings of the 25 th Joint Propulsion Conference. Monterey: American Institute of Aeronautics and Astronautics, 1989
    [19] HOCHSTEIN J I, PATAG A E, KORAKIANITIS T P, et al. Pulsed thrust propellant reorientation: concept and modeling[J]. Journal of Propulsion and Power, 1992, 8(4): 770-777 doi: 10.2514/3.23548
    [20] CONCUS P. Static menisci in a vertical right circular cylinder[J]. Journal of Fluid Mechanics, 1968, 34(3): 481-495 doi: 10.1017/S002211206800203X
    [21] PETRASH D A, NELSON T M, OTTO E W. Effect of Surface Energy on the Liquid-Vapor Interface Configuration During Weightlessness[R]. Washington: NASA, 1963
    [22] SIEGERT C E, PETRASH D A, OTTO E W. Time Response of Liquid-Vapor Interface After Entering Weightlessness[R]. Washington: NASA, 1964
    [23] HOCKING L M. The damping of capillary–gravity waves at a rigid boundary[J]. Journal of Fluid Mechanics, 1987, 179: 253-266 doi: 10.1017/S0022112087001514
    [24] KAUKLER W F. Fluid oscillation in the drop tower[J]. Metallurgical Transactions A, 1988, 19(11): 2625-2630 doi: 10.1007/BF02645793
    [25] WOLK G, DREYER M, RATH H J, et al. Damped oscillations of a liquid/gas surface upon step reduction in gravity[J]. Journal of Spacecraft and Rockets, 1997, 34(1): 110-117 doi: 10.2514/2.3179
    [26] MICHAELIS M, DREYER M E, RATH H J. Experimental investigation of the liquid interface reorientation upon step reduction in gravity[J]. Annals of the New York Academy of Sciences, 2002, 974(1): 246-260 doi: 10.1111/j.1749-6632.2002.tb05911.x
    [27] MICHAELIS M, GERSTMANN J, DREYER M E, et al. Damping behavior of the free liquid interface oscillation upon step reduction in gravity[J]. Proceedings in Applied Mathematics and Mechanics, 2003, 2(1): 320-321 doi: 10.1002/pamm.200310144
    [28] STIEF M, DREYER M. Experimental investigation of surface reorientation and oscillations of liquid nitrogen[C]//Proceedings of the 56 th International Astronautical Congress of the International Astronautical Federation, the International Academy of Astronautics, and the International Institute of Space Law. Fukuoka: American Institute of Aeronautics and Astronautics, 2005
    [29] LI J C, LIN H, ZHAO J F, et al. Dynamic behaviors of liquid in partially filled tank in short-term microgravity[J]. Microgravity Science and Technology, 2018, 30(6): 849-856 doi: 10.1007/s12217-018-9642-5
    [30] LI J C, LIN H, LI K, et al. Liquid sloshing in partially filled capsule storage tank undergoing gravity reduction to low/micro-gravity condition[J]. Microgravity Science and Technology, 2020, 32(4): 587-596 doi: 10.1007/s12217-020-09801-3
    [31] LI J C, LIN H, LI K, et al. Dynamic behavior in a storage tank in reduced gravity using dynamic contact angle method[J]. Microgravity Science and Technology, 2020, 32(6): 1039-1048 doi: 10.1007/s12217-020-09831-x
    [32] 魏列, 杜王芳, 赵建福, 等. 微重力条件下部分充液贮箱气液界面波动特性的数值模拟[J]. 力学学报, 2022, 54(4): 1004-1011 doi: 10.6052/0459-1879-21-645

    WEI Lie, DU Wangfang, ZHAO Jianfu, et al. Numerical study on gas-liquid interface waves in partially filled tanks under microgravity condition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 1004-1011 doi: 10.6052/0459-1879-21-645
    [33] HIRT C W, NICHOLS B D. Volume of fluid (VOF) method for the dynamics of free boundaries[J]. Journal of Computational Physics, 1981, 39(1): 201-225 doi: 10.1016/0021-9991(81)90145-5
    [34] BRACKBILL J U, KOTHE D B, ZEMACH C. A continuum method for modeling surface tension[J]. Journal of Computational Physics, 1992, 100(2): 335-354 doi: 10.1016/0021-9991(92)90240-Y
    [35] WEISLOGEL M M. Fluid interface phenomena in a low-gravity environment: recent results from drop tower experimentation[J]. Space Forum, 1998, 3: 59-86
    [36] 庄礼贤, 尹协远, 马晖扬. 流体力学[M]. 2版. 合肥: 中国科学技术大学出版社, 2009

    ZHUANG Lixian, YIN Xieyuan, MA Huiyang. Fluid Mechanics[M]. 2 nd ed. Hefei: University of Science and Technology of China Press, 2009
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  175
  • HTML全文浏览量:  88
  • PDF下载量:  29
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-09-05
  • 修回日期:  2023-09-28
  • 网络出版日期:  2023-10-20

目录

    /

    返回文章
    返回