留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于中法海洋卫星波谱仪观测的一维海浪谱模型对比

王义慧 徐星欧 徐莹

王义慧, 徐星欧, 徐莹. 基于中法海洋卫星波谱仪观测的一维海浪谱模型对比[J]. 空间科学学报, 2023, 43(6): 1111-1124. doi: 10.11728/cjss2023.06.2023-0068
引用本文: 王义慧, 徐星欧, 徐莹. 基于中法海洋卫星波谱仪观测的一维海浪谱模型对比[J]. 空间科学学报, 2023, 43(6): 1111-1124. doi: 10.11728/cjss2023.06.2023-0068
WANG Yihui, XU Xingou, XU Ying. Comparisons on One-dimensional Ocean Wave Spectrum Models Based on SWIM/CFOSAT Observations (in Chinese). Chinese Journal of Space Science, 2023, 43(6): 1111-1124 doi: 10.11728/cjss2023.06.2023-0068
Citation: WANG Yihui, XU Xingou, XU Ying. Comparisons on One-dimensional Ocean Wave Spectrum Models Based on SWIM/CFOSAT Observations (in Chinese). Chinese Journal of Space Science, 2023, 43(6): 1111-1124 doi: 10.11728/cjss2023.06.2023-0068

基于中法海洋卫星波谱仪观测的一维海浪谱模型对比

doi: 10.11728/cjss2023.06.2023-0068 cstr: 32142.14.cjss2023.06.2023-0068
基金项目: 国家重点研究发展计划项目(2022YFE0204600)和国家重大科技基础设施项目(2023-EL-PT-000157)共同资助
详细信息
    作者简介:
    通讯作者:
  • 中图分类号: P714

Comparisons on One-dimensional Ocean Wave Spectrum Models Based on SWIM/CFOSAT Observations

  • 摘要: 海浪谱模型不仅能表征粗糙海表面,还能揭示海浪能量随波数和方向的分布,为海洋探测等研究和应用提供必要信息。中法海洋卫星搭载的波谱仪可实现全球海浪方向谱的空间观测。根据现有海浪谱模型和海浪谱观测的发展现状,对波谱仪观测的海浪参数进行统计特征分析,在波谱仪观测的波数范围内(0.01~0.25 rad·m–1),进行不同海态下实测海浪谱与以Apel谱、Elfouhaily谱和Goda谱为代表的波高谱和曲率谱模型的比较,得到现有海浪谱观测与上述三种谱模型的差异,并结合海浪参数统计特征,对产生差异的原因进行讨论分析。结果表明,现有谱与波谱仪观测的差异来自于其对海态的不完全表达,且所表示的海态在自然状态中仅占有限比例。研究结论可以为海浪谱模型和观测的后续研究提供支持。

     

  • 图  1  SWIM观测几何示例

    Figure  1.  Geometry of SWIM observation

    图  2  不同风速下的Apel谱

    Figure  2.  Apel spectrum at different wind speed

    图  3  不同风速下的Elfouhaily谱

    Figure  3.  Elfouhaily spectrum at different wind speed

    图  4  $ {k}_{\rm{p}} $为0.048 rad·m–1时不同有效波高下的Goda谱

    Figure  4.  Goda spectrum at different significant wave height when $ {k}_{\rm{p}} $ is 0.048 rad·m–1

    图  5  有效波高为3 m时不同$ {k}_{\rm{p}} $下的Goda谱

    Figure  5.  Goda spectrum at different $ {k}_{\rm{p}} $ when significant wave height is 3 m

    图  6  风速分布统计

    Figure  6.  Statistical result of wind speed distribution

    图  7  风速直方图

    Figure  7.  Histogram of wind speed

    图  8  海浪参数直方图

    Figure  8.  Histogram of wave parameters

    图  9  谱形状参数直方图

    Figure  9.  Histogram of spectral shape parameters

    图  10  逆波龄为0.8~0.9时SWIM数据与Apel谱、Elfouhaily谱、Goda谱的比较

    Figure  10.  Comparison between SWIM observations and spectrum models, such as Apel, Elfouhaily, Goda spectrum when inverse wave age rank is from 0.8 to 0.9

    图  11  逆波龄为0.9~1.1时SWIM数据与Apel谱、Elfouhaily谱、Goda谱的比较

    Figure  11.  Comparison between SWIM observations and spectrum models, such as Apel, Elfouhaily, Goda spectrum when inverse wave age rank is 0.9~1.1

    图  12  逆波龄<0.8时,SWIM数据与Apel谱、Elfouhaily谱、Goda谱的比较

    Figure  12.  Comparison between SWIM observations and spectrum models, such as Apel, Elfouhaily, Goda spectrum when inverse wave age rank is less than 0.8

    表  1  不同海态的海浪参数平均值

    Table  1.   Average value of wave parameters at different sea state

    Significant wave
    height/(m)
    Wind speed
    /(m·s–1
    Peak wavenumber
    /(rad·m–1
    Inverse wave age Wave steepness Width Sharp
    0.8~0.9 2.795 11.266 0.055 0.843 0.024 0.114 2.146
    0.9~1.1 2.706 11.470 0.067 0.944 0.029 0.116 2.259
    <0.8 3.107 7.279 0.027 0.376 0.013 0.081 2.269
    Total 3.087 7.416 0.027 0.388 0.013 0.082 2.259
    下载: 导出CSV

    表  2  逆波龄为0.8~0.9,SWIM与Apel谱、Elfouhaily谱和Goda谱的一致性评价指标

    Table  2.   Consistency evaluation indicators for SWIM with Apel spectrum, Elfouhaily spectrum, and Goda spectrum, when inverse wave age rank is from 0.8 to 0.9

    Apel波高谱/曲率谱 Elfouhaily波高谱/曲率谱 Goda波高谱/曲率谱
    RMSE 2.015/0.000 2.400/0.001 2.235/0.001
    R-Square 0.096/0.971 –0.284/0.200 –0.113/0.785
    DI 0.228/0.099 0.562/0.583 0.329/0.300
    下载: 导出CSV

    表  3  逆波龄为0.9~1.1时SWIM与Apel谱、Elfouhaily与Goda谱的一致性评价指标

    Table  3.   Consistency evaluation indicators for SWIM with Apel spectrum, Elfouhaily spectrum, and Goda spectrum, when inverse wave age rank is from 0.9 to 1.1

    Apel波高谱/曲率谱 Elfouhaily波高谱/曲率谱 Goda波高谱/曲率谱
    RMSE 2.163/0.000 3.102/0.001 2.093/0.000
    R-Square –0.583/0.971 –2.254/0.416 –0.481/0.916
    DI 0.313/0.106 0.740/0.516 0.304/0.181
    下载: 导出CSV

    表  4  逆波龄<0.8,SWIM与Apel谱、Elfouhaily谱和Goda谱的一致性评价指标

    Table  4.   Consistency evaluation indicators for SWIM with Apel spectrum, Elfouhaily spectrum, and Goda spectrum, when inverse wave age rank is less than 0.8

    Apel波高谱/曲率谱 Elfouhaily波高谱/曲率谱 Goda波高谱/曲率谱
    RMSE 8.260/0.001 8.234/0.000 1.453/0.001
    R-Square –1.178/0.591 –1.164/0.885 0.933/0.086
    DI 0.837/0.416 0.759/0.125 0.232/0.603
    下载: 导出CSV
  • [1] HAUSER D, TISON C, AMIOT T, et al. SWIM: the first spaceborne wave scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5): 3000-3014 doi: 10.1109/TGRS.2017.2658672
    [2] 文圣常, 余宙文. 海浪理论与计算原理[M]. 北京: 科学出版社, 1984

    WEN Shengchang, YU Zhouwen. Theory and Computation Principle of Ocean Waves[M]. Beijing: Science Press, 1984
    [3] [日]合田良实. 港工建筑物的防浪设计[M]. 刘大中, 孙巨才, 译. 北京: 海洋出版社, 1984

    GODA Y [Japan]. Design of Harbor Structures against Random Seas[M]. LIU Dazhong, SUN Jucai, trans. Beijing: Ocean Press, 1984
    [4] 杨生强. 南海北部台风影响下海浪谱研究[D]. 青岛: 中国科学院大学, 2015

    YANG Shengqiang. Research on the Northern South China Sea Wave Spectrum Under the Influence of Typhoon[D]. Qingdao: University of Chinese Academy of Sciences, 2015
    [5] APEL J R. An improved model of the ocean surface wave vector spectrum and its effects on radar backscatter[J]. Journal of Geophysical Research: Oceans, 1994, 99(C8): 16269-16291 doi: 10.1029/94JC00846
    [6] COX C, MUNK W. Measurement of the roughness of the sea surface from photographs of the sun’s glitter[J]. Journal of the Optical Society of America, 1954, 44(11): 838-850 doi: 10.1364/JOSA.44.000838
    [7] ELFOUHAILY T, CHAPRON B, KATSAROS K, et al. A unified directional spectrum for long and short wind-driven waves[J]. Journal of Geophysical Research: Oceans, 1997, 102(C7): 15781-15796 doi: 10.1029/97JC00467
    [8] KUDRYAVTSEV V N, MAKIN V K, CHAPRON B. Coupled sea surface-atmosphere model: 2. Spectrum of short wind waves[J]. Journal of Geophysical Research: Oceans, 1999, 104(C4): 7625-7639 doi: 10.1029/1999JC900005
    [9] RYABKOVA M, KARAEV V, GUO J, et al. A review of wave spectrum models as applied to the problem of radar probing of the sea surface[J]. Journal of Geophysical Research: Oceans, 2019, 124(10): 7104-7134 doi: 10.1029/2018JC014804
    [10] GUÉRIN C A, CAPELLE V, HARTMANN J M. Revisiting the Cox and Munk wave-slope statistics using IASI observations of the sea surface[J]. Remote Sensing of Environment, 2023, 288: 113508 doi: 10.1016/j.rse.2023.113508
    [11] 宋莎莎. 机载波谱仪海浪谱反演方法研究[D]. 青岛: 国家海洋局第一海洋研究所, 2011

    SONG Shasha. Research on Airborne Wave Spectrometer Wave Spectrum Inversion[D]. Qingdao: First Institute of Oceanography, MNR, 2011
    [12] 林文明, 董晓龙. 星载雷达波谱仪反演海浪谱的精度研究[J]. 海洋学报, 2010, 32(5): 9-16

    LIN Wenming, DONG Xiaolong. The resolution of ocean wave spectra retrieved by space-borne real aperture radar spectrometer[J]. Acta Oceanologica Sinica, 2010, 32(5): 9-16
    [13] HAUSER D, TOURAIN C, LACHIVER J M. CFOSAT: A new mission in orbit to observe simultaneously wind and waves at the ocean surface[J]. Space Research Today, 2019, 206: 15-21
    [14] HAUSER D, TOURAIN C, HERMOZO L, et al. New observations from the SWIM radar on-board CFOSAT: instrument validation and ocean wave measurement assessment[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59(1): 5-26 doi: 10.1109/TGRS.2020.2994372
    [15] ALPERS W R, ROSS D B, RUFENACH C L. On the detectability of ocean surface waves by real and synthetic aperture radar[J]. Journal of Geophysical Research: Oceans, 1981, 86(C7): 6481-6498 doi: 10.1029/JC086iC07p06481
    [16] XU Y, HAUSER D, LIU J Q, et al. Statistical comparison of ocean wave directional spectra derived from SWIM/CFOSAT satellite observations and from buoy observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5117520
    [17] WANG H, MOUCHE A, HUSSON R, et al. Quantifying uncertainties in the partitioned swell heights observed from CFOSAT SWIM and Sentinel-1 SAR via triple collocation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4207716
    [18] MERLE LE E, HAUSER D, PEUREUX C, et al. Directional and frequency spread of surface ocean waves from CFOSAT/SWIM measurements[C]//Proceedings of 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. Brussels, Belgium: IEEE, 2021: 7390-7393
    [19] DU Y L, YANG X F, CHEN K S, et al. An improved spectrum model for sea surface radar backscattering at L-Band[J]. Remote Sensing, 2017, 9(8): 776 doi: 10.3390/rs9080776
    [20] LUCAS C, GUEDES SOARES C. On the modelling of swell spectra[J]. Ocean Engineering, 2015, 108: 749-759 doi: 10.1016/j.oceaneng.2015.08.017
    [21] MIAO Y J, DONG X L, BOURASSA M A, et al. Effects of ocean wave directional spectra on Doppler retrievals of ocean surface current[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4204812
    [22] HWANG P A. Comment on “A study of the slope probability density function of the ocean waves from radar observations” by D. Hauser et al.[J]. Journal of Geophysical Research: Oceans, 2009, 114(C2): C02008
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  1076
  • HTML全文浏览量:  192
  • PDF下载量:  123
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-06-20
  • 修回日期:  2023-08-11
  • 网络出版日期:  2023-08-31

目录

    /

    返回文章
    返回