留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SAR卫星观测的北极冰涡时空分布特征

房超 汪胜 刘桂红 杜延磊 赵亚明 于䁑 杨晓峰

房超, 汪胜, 刘桂红, 杜延磊, 赵亚明, 于䁑, 杨晓峰. 基于SAR卫星观测的北极冰涡时空分布特征[J]. 空间科学学报, 2023, 43(6): 1125-1134. doi: 10.11728/cjss2023.06.2023-0088
引用本文: 房超, 汪胜, 刘桂红, 杜延磊, 赵亚明, 于䁑, 杨晓峰. 基于SAR卫星观测的北极冰涡时空分布特征[J]. 空间科学学报, 2023, 43(6): 1125-1134. doi: 10.11728/cjss2023.06.2023-0088
FANG Chao, WANG Sheng, LIU Guihong, DU Yanlei, ZHAO Yaming, YU Yang, YANG Xiaofeng. Spatio-temporal Distribution Characteristics of Arctic Ice Eddies Based on SAR Satellite Observations (in Chinese). Chinese Journal of Space Science, 2023, 43(6): 1125-1134 doi: 10.11728/cjss2023.06.2023-0088
Citation: FANG Chao, WANG Sheng, LIU Guihong, DU Yanlei, ZHAO Yaming, YU Yang, YANG Xiaofeng. Spatio-temporal Distribution Characteristics of Arctic Ice Eddies Based on SAR Satellite Observations (in Chinese). Chinese Journal of Space Science, 2023, 43(6): 1125-1134 doi: 10.11728/cjss2023.06.2023-0088

基于SAR卫星观测的北极冰涡时空分布特征

doi: 10.11728/cjss2023.06.2023-0088 cstr: 32142.14.cjss2023.06.2023-0088
基金项目: 国家自然科学基金项目资助(42206180)
详细信息
    作者简介:
  • 中图分类号: P732

Spatio-temporal Distribution Characteristics of Arctic Ice Eddies Based on SAR Satellite Observations

  • 摘要: 北冰洋复杂的寒、暖洋流交汇作用为涡旋的生成和发展提供了适宜的条件。在北极边缘冰区,上层浮冰示踪海洋涡旋,形成冰涡特征。冰涡通过垂直热量传输加速上层浮冰的消融,影响着边缘冰区的演变,间接调节全球气候。本文利用高空间分辨率的合成孔径雷达(SAR)卫星影像开展了北极冰涡检测识别与时空特征分析研究。基于SAR影像构建训练数据集,采用YOLOv7目标检测模型完成模型训练任务;对2022年北极冰涡影像进行检测识别,在此基础之上进行目视解译处理。基于目视解译结果开展冰涡特征分析。目视解译共确定3615个气旋型冰涡和1482个反气旋型冰涡,这些冰涡主要在7-11月生成,集中分布于格陵兰岛东部沿岸和格陵兰海中北部,冰涡的平均直径为21.2 km,平均海冰占比为41.76%。本文的冰涡检测识别和时空特征分析研究结果为北极地区海洋现象分析与气候研究提供了有价值的方法参考和遥感分析资料。

     

  • 图  1  北极边缘冰区实验数据分布

    Figure  1.  Distribution of experimental data in the Arctic marginal ice area

    图  2  YOLO目标检测

    Figure  2.  YOLO target detection

    图  3  冰涡类型判别和阈值法

    Figure  3.  Ice eddy type discrimination and threshold method

    图  4  冰涡空间分布。(a)气旋型冰涡,(b)反气旋型冰涡

    Figure  4.  Spatial distribution of ice eddies. (a) Cyclonic ice eddy, (b) anticyclonic ice eddy

    图  5  冰涡分布统计直方图。(a)冰涡直径数量分布,(b)冰涡月度数量分布,(c)冰涡海冰占比数量分布

    Figure  5.  Histogram of ice eddy distribution statistics. (a) Ice eddy diameter number distribution, (b) ice eddy monthly number distribution, (c) ice eddy sea ice percentage number distribution

    图  6  冰涡空间分布(直径>60 km)

    Figure  6.  Spatial distribution of ice eddies (diameter > 60 km)

    图  7  冰涡分布统计散点图。(a)冰涡月度直径分布,(b)冰涡月度海冰占比分布,(c)冰涡海冰占比与直径分布

    Figure  7.  Scatterplot of ice eddy distribution. (a) Monthly diameter distribution of ice eddies, (b) distribution of monthly sea-ice share of ice eddies, (c) distribution of sea-ice share of ice eddies with diameter

    表  1  哨兵一号卫星成像模式及参数

    Table  1.   Sentinel-1 imaging modalities and parameters

    成像模式 分辨率
    /m
    幅宽
    /km
    极化方式
    SM 5×5 80 VV+VH/HH+HV/HH/VV
    IW 5×20 250 VV+VH/HH+HV/HH/VV
    EW 20×40 400 VV+VH/HH+HV/HH/VV
    WV 5×5 20×20 HH/VV
    下载: 导出CSV

    表  2  北极冰涡检测SAR数据统计(哨兵一号卫星)

    Table  2.   SAR data statistics for Arctic ice eddy detection (Sentinel-1)

    Year Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec. Total
    2014 291 23 9 323
    2022 84 63 95 68 67 181 268 238 151 196 161 129 1701
    下载: 导出CSV
  • [1] D'ASARO E A. Observations of small eddies in the Beaufort Sea[J]. Journal of Geophysical Research: Oceans, 1988, 93(C6): 6669-6684 doi: 10.1029/JC093iC06p06669
    [2] JOHANNESSEN J A, RØED L P, WAHL T. Eddies detected in ERS-1 SAR images and simulated in reduced gravity model[J]. International Journal of Remote Sensing, 1993, 14(11): 2203-2213 doi: 10.1080/01431169308954029
    [3] MANLEY T O, HUNKINS K. Mesoscale eddies of the arctic ocean[J]. Journal of Geophysical Research: Oceans, 1985, 90(C3): 4911-4930 doi: 10.1029/JC090iC03p04911
    [4] SPALL M A, PICKART R S, FRATANTONI P S, et al. Western Arctic shelfbreak eddies: Formation and transport[J]. Journal of Physical Oceanography, 2008, 38(8): 1644-1668 doi: 10.1175/2007JPO3829.1
    [5] GILL A E, GREEN J S A, SIMMONS A J. Energy partition in the large-scale ocean circulation and the production of mid-ocean eddies[J]. Deep Sea Research and Oceanographic Abstracts, 1974, 21(7): 509-528
    [6] PEDLOSKY J. On the radiation of meso-scale energy in the mid-ocean[J]. Deep Sea Research, 1977, 24(6): 591-600 doi: 10.1016/0146-6291(77)90529-X
    [7] MENEGHELLO G, MARSHALL J, LIQUE C, et al. Genesis and decay of mesoscale baroclinic eddies in the seasonally ice-covered interior arctic ocean[J]. Journal of Physical Oceanography, 2021, 51(1): 115-129 doi: 10.1175/JPO-D-20-0054.1
    [8] CASSIANIDES A, LIQUE C, KOROSOV A. Ocean eddy signature on SAR‐derived sea ice drift and vorticity[J]. Geophysical Research Letters, 2021, 48(6): e2020GL092066 doi: 10.1029/2020GL092066
    [9] 李威, 王琦, 马继瑞, 等. 台湾以东黑潮锋的中尺度过程研究[J]. 海洋通报, 2011, 30(5): 518-528 doi: 10.3969/j.issn.1001-6392.2011.05.007

    LI Wei, WANG Qi, MA Jirui, et al. Study on the meso-scale process of the Kuroshio front to the east of Taiwan[J]. Marine Science Bulletin, 2011, 30(5): 518-528 doi: 10.3969/j.issn.1001-6392.2011.05.007
    [10] FRENGER I, GRUBER N, KNUTTI R, et al. Imprint of Southern Ocean eddies on winds, clouds and rainfall[J]. Nature Geoscience, 2013, 6(8): 608-612 doi: 10.1038/ngeo1863
    [11] ROBINSON A R. Overview and summary of eddy science[M]//ROBINSON A R. Eddies in Marine Science. Berlin: Springer, 1983: 3-15
    [12] CHEN G X, GAN J P, XIE Q, et al. Eddy heat and salt transports in the South China Sea and their seasonal modulations[J]. Journal of Geophysical Research: Oceans, 2012, 117(C5): C05021
    [13] WANG X D, LI W, QI Y Q, et al. Heat, salt and volume transports by eddies in the vicinity of the Luzon Strait[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2012, 61: 21-33 doi: 10.1016/j.dsr.2011.11.006
    [14] CHELTON D B, SCHLAX M G, SAMELSON R M, et al. Global observations of large oceanic eddies[J]. Geophysical Research Letters, 2007, 34(15): L15606
    [15] CARPENTER J R, TIMMERMANS M L. Deep mesoscale eddies in the Canada Basin, Arctic Ocean[J]. Geophysical Research Letters, 2012, 39(20): L20602
    [16] ZHAO M N, TIMMERMANS M L, COLE S, et al. Characterizing the eddy field in the Arctic Ocean halocline[J]. Journal of Geophysical Research: Oceans, 2014, 119(12): 8800-8817 doi: 10.1002/2014JC010488
    [17] ZHAO M N, TIMMERMANS M L, COLE S, et al. Evolution of the eddy field in the Arctic Ocean's Canada Basin, 2005–2015[J]. Geophysical Research Letters, 2016, 43(15): 8106-8114 doi: 10.1002/2016GL069671
    [18] VON APPEN W J, WEKERLE C, HEHEMANN L, et al. Observations of a submesoscale cyclonic filament in the marginal ice zone[J]. Geophysical Research Letters, 2018, 45(12): 6141-6149 doi: 10.1029/2018GL077897
    [19] TOOLE J M, KRISHFIELD R A, TIMMERMANS M L, et al. The ice-tethered profiler: Argo of the Arctic[J]. Oceanography, 2011, 24(3): 126-135 doi: 10.5670/oceanog.2011.64
    [20] KOZLOV I E, ARTAMONOVA A V, MANUCHARYAN G E, et al. Eddies in the Western Arctic Ocean from spaceborne SAR observations over open ocean and marginal ice zones[J]. Journal of Geophysical Research: Oceans, 2019, 124(9): 6601-6616 doi: 10.1029/2019JC015113
    [21] CHELTON D B, SCHLAX M G, SAMELSON R M. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011, 91(2): 167-216 doi: 10.1016/j.pocean.2011.01.002
    [22] JOHANNESSEN J A, SHUCHMAN R A, DIGRANES G, et al. Coastal ocean fronts and eddies imaged with ERS 1 synthetic aperture radar[J]. Journal of Geophysical Research: Oceans, 1996, 101(C3): 6651-6667 doi: 10.1029/95JC02962
    [23] JOHANNESSEN J A, KUDRYAVTSEV V, AKIMOV D, et al. On radar imaging of current features: 2. Mesoscale eddy and current front detection[J]. Journal of Geophysical Research: Oceans, 2005, 110(C7): C07017
    [24] KOZLOV I E, ATADZHANOVA O A. Eddies in the marginal ice zone of fram strait and svalbard from spaceborne SAR observations in winter[J]. Remote Sensing, 2022, 14(1): 134
    [25] LI X F, LIU B, ZHENG G, et al. Deep-learning-based information mining from ocean remote-sensing imagery[J]. National Science Review, 2020, 7(10): 1584-1605 doi: 10.1093/nsr/nwaa047
    [26] BHAVYA SREE B, YASHWANTH BHARADWAJ V, NEELIMA N. An inter-comparative survey on state-of-the-art detectors—R-CNN, YOLO, and SSD[M]//REDDY A N R, MARLA D, FAVORSKAYA M N, et al. Intelligent Manufacturing and Energy Sustainability: Proceedings of ICIMES. Singapore: Springer, 2021
    [27] TERVEN J, CORDOVA-ESPARZA D M. A comprehensive review of YOLO: From YOLOv1 to YOLOv8 and beyond[OL]. arXiv preprint arXiv: 230400501, 2023
    [28] WANG X N, WANG X G, LI C, et al. Data-attention-YOLO (DAY): A comprehensive framework for mesoscale eddy identification[J]. Pattern Recognition, 2022, 131: 108870 doi: 10.1016/j.patcog.2022.108870
    [29] CAO L J, ZHANG D J, GUO Q, et al. Ocean Mesoscale Eddies Identification Based on Yolof[C]//IGARSS 2022-2022 IEEE International Geoscience and Remote Sensing Symposium. Kuala Lumpur, Malaysia: IEEE, 2022
    [30] KHACHATRIAN E, SANDALYUK N, LOZOU P. Eddy detection in the marginal ice zone with sentinel-1 data using YOLOv5[J]. Remote Sensing, 2023, 15(9): 2244 doi: 10.3390/rs15092244
    [31] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA: IEEE, 2016
    [32] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver, BC, Canada: IEEE, 2023
    [33] BONDEVIK E. Studies of eddies in the marginal ice zone along the east Greenland current using spaceborne synthetic aperture radar (SAR)[D]. Bergen: The University of Bergen, 2011
    [34] PEROVICH D K, JONES K F. The seasonal evolution of sea ice floe size distribution[J]. Journal of Geophysical Research: Oceans, 2014, 119(12): 8767-8777 doi: 10.1002/2014JC010136
    [35] MCWILLIAMS J C. Submesoscale currents in the ocean[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2016, 472 (2189): 20160117
    [36] STRONG C, RIGOR I G. Arctic marginal ice zone trending wider in summer and narrower in winter[J]. Geophysical Research Letters, 2013, 40(18): 4864-4868 doi: 10.1002/grl.50928
    [37] MANUCHARYAN G E, THOMPSON A F. Submesoscale sea ice-ocean interactions in marginal ice zones[J]. Journal of Geophysical Research:Oceans, 2017, 122(12): 9455-9475 doi: 10.1002/2017JC012895
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  752
  • HTML全文浏览量:  130
  • PDF下载量:  59
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-08-18
  • 修回日期:  2023-10-10
  • 网络出版日期:  2023-11-14

目录

    /

    返回文章
    返回