Advance in Ocean Satellite Radar Altimetry Technology
-
摘要: 雷达高度计是一种主动式的微波遥感器,可以提供全球海面高度、有效波高和海面风速数据,利用雷达高度计测得的数据可以进一步用于海洋动力学、海面地形、海洋重力异常和海底地形等方面的研究。经过近50年的发展,雷达测高技术已取得巨大进展,从载荷设计、数据处理到实际应用都积累了大量成果,雷达测高数据不仅用于海洋研究,还广泛用于内陆水域水位变化、海冰厚度变化、冰川质量平衡和异常气候影响等方面研究。本文根据雷达测高技术的基本原理,分析了海洋卫星雷达测高技术发展的现状,并对未来的发展进行了展望。Abstract: Radar altimeter is an active microwave remote sensor, which is able to provide global Sea Surface Height (SSH), Significant Wave Height (SWH) and sea surface wind speed measurements. Radar altimetry data can be further used for study of ocean dynamics, sea surface topography, marine gravity anomalies, seafloor topography, global and regional sea level changes, etc. After decades of development, satellite radar altimetry has made great progress, from instrument design, data processing to application. Up to now, more than 20 radar altimetry satellites have been launched in the world. Radar altimetry data can be used not only for oceanographic research, but also widely used for inland water level changes, sea ice thickness changes, glacier mass balance and abnormal climate impacts. This paper mainly analyzes the basic principles, current development status and typical applications of satellite radar altimetry technology, and presents the prospects for future development.
-
Key words:
- Ocean satellite /
- Satellite altimetry /
- Radar altimeter /
- Sea surface height
-
表 1 目前已发射的雷达测高卫星
Table 1. Past and current radar altimetry mission characteristics
卫星名称 研制国家或地区 发射/结束时间 雷达高度计类型 轨道高度/km Skylab 美国 1973/1974 Ku波段雷达高度计 425 Geos-3 美国 1975/1979 Ku波段雷达高度计 840 Seasat 美国 1978/1978 Ku波段雷达高度计 800 Geosat 美国 1985/1990 Ku波段雷达高度计 800 ERS-1 欧洲 1991/2000 Ku波段雷达高度计 785 T/P 美国/法国 1992/2006 Ku和C波段雷达高度计 1336 ERS-2 欧洲 1995/2011 Ku波段雷达高度计 785 GFO 美国 1998/2008 Ku波段雷达高度计 800 SZ-4 中国 2002/2003 Ku波段雷达高度计 340 Jason-1 美国/法国 2001/2013 Ku和C波段雷达高度计 1336 ENVISAT 欧洲 2002/2012 Ku和S波段雷达高度计 800 Jason-2 美国/法国 2008/2019 Ku和C波段雷达高度计 1336 CryoSat-2 欧洲 2010/- Ku波段雷达高度计(LRM, SAR, InSAR模式) 717 HY-2A 中国 2011/2022 Ku和C波段雷达高度计 971 SARAL 印度/法国 2013/- Ka波段雷达高度计 800 Jason-3 美国/法国 2016/- Ku和C波段雷达高度计 1336 Sentinel-3 A 欧洲 2016/- Ku和C波段雷达高度计(闭环合成孔径模式) 815 TG-2 中国 2016/2019 Ku波段干涉雷达高度计 378 HY-2B 中国 2018/- Ku和C波段雷达高度计 971 Sentinel-3 B 欧洲 2018/- Ku和C波段雷达高度计(闭环合成孔径模式) 815 HY-2C 中国 2020/- Ku和C波段雷达高度计 957 Sentinel-6 A 欧洲/美国 2020/- Ku和C波段雷达高度计(开环合成孔径模式) 1336 HY-2D 中国 2021/- Ku和C波段雷达高度计 957 SWOT 美国/欧洲 2022/- Ka波段干涉雷达高度计;
Ku和C波段底视雷达高度计890 注 “-”表示目前还处于在轨运行状态。 表 2 Topex雷达高度计仪器参数
Table 2. Specification of the Topex radar altimeter
参数 参数值 发射频率/GHz 13.575 (Ku), 5.3 (C) 脉冲重复频率/Hz 4200 (Ku), 1220 (C) 脉冲宽度/µs 102.4 (Ku), 102.4 或 32 (C) 带宽/MHz 320 (Ku), 320 或 100 (C) 天线直径/m 1.5 天线波束宽度/(º) 1.1 (Ku), 2.7 (C) 质量/kg 230 功耗/W 237 表 3 Poseidon-2雷达高度计仪器参数
Table 3. Poseidon-2 radar altimeter parameters
参数 参数值 发射频率/GHz 13.575 (Ku), 5.3 (C) 脉冲重复频率/Hz 2060 interlaced
(3 Ku-1 C-3 Ku-band)脉冲宽度/μs 105.6 带宽/MHz 320 (Ku, C) 天线直径/m 1.2 天线波束宽度/( º ) 1.28 (Ku), 3.4 (C) 质量/kg 70 功耗/W 78 表 4 RA-1雷达高度计仪器参数
Table 4. Specification of the RA-1 instrument
参数 参数值 发射频率/GHz 13.8 (Ku-band) 脉冲重复频率/Hz 1020 脉冲宽度/µs 100 带宽/MHz 330 (ocean mode)
82.5 (ice mode)回波采样点数 64 天线直径/m 1.2 天线波束宽度/(º) 1.3 质量/kg 96 功耗/W 134.5 表 5 RA-2雷达高度计仪器参数
Table 5. Specification of the RA-2 instrument
参数 参数值 发射频率/GHz 13.575 (Ku-band)
3.2 (S-band)脉冲重复频率/Hz 1795.33 (Ku-band)
448.83 (S-band)脉冲宽度/μs 100 带宽/MHz 320, 80, 20 (Ku-band)
160 (S-band)回波采样点数 128 天线直径/m 1.2 天线波束宽度/(º) 1.29 (Ku-band), 5.5 (S-band) 质量/kg 110 功耗/W 161 表 6 AltiKa雷达高度计参数
Table 6. Key parameters of the AltiKa radar altimeter
参数 参数值 发射频率/GHz 35.75 脉冲带宽/MHz 500 脉冲持续时间/µs 110 PRF/kHz 4 回波平均值/ms 25 回波采样点个数 128 天线直径/m 1 表 7 KaRIN雷达干涉仪参数
Table 7. Main parameters of KaRIN
参数 参数值 发射频率/GHz 35.75 发射带宽/MHz 200 发射脉冲宽度/µs 4.5 PRF/Hz 2 × 4420 (Average) 峰值发射功率/W 1500 基线长度/m 10 天线尺寸/m 5 × 0.25 极化方式 VV(右刈幅)和HH(左刈幅) 表 8 HY-2A卫星雷达高度计仪器硬件指标
Table 8. Main parameters of the HY-2A radar altimeter
硬件参数 硬件指标 工作频率/GHz 13.58,5.25 发射脉冲宽度/µs 102.4 线性调频信号带宽/MHz 320/80/20 发射峰值功率/W 10(Ku波段),20(C波段) Ku脉冲重复频率/kHz 2.3 天线口径/m 1.3 (Ku波段和C波段
共用一副天线)半功率波束宽度/(°) 1.2 (Ku波段)和 3.2 (C波段) 极化方式 线性同极化 天线增益/dBi 42 (Ku波段),32 (C波段) AGC动态范围/dB 60 数据率/(kbit·s–1) 240 质量/kg 110 功耗/W 170 表 9 HY-2E星合成孔径雷达高度计参数
Table 9. Main parameters of the HY-2E radar altimeter
参数 参数值 工作频率/GHz 13.58 (Ku波段),5.41 (C波段) 发射脉冲宽度/µs 51.2 线性调频信号带宽/MHz 320 发射峰值功率/W 10(Ku波段),20(C波段) Ku脉冲重复频率/kHz 9 合成孔径模式 开环合成孔径模式 天线口径/m 1.2 (Ku波段和C波段
共用一副天线)天线增益/dBi 41(Ku波段),31 dBi(C波段) AGC动态范围/dB 60 测距精度/cm 0.8 表 10 TG-2宽刈幅高度计主要系统参数
Table 10. Main parameters of the TG-2 wide swath altimeter
参数 参数值 工作频率/GHz 13.58 线性调频信号带宽/MHz 40 发射峰值功率/W 300 极化方式 VV 入射角/(°) 1~8 天线增益/dB 36 基线长度/m 2.3 方位向分辨率/m 30 距离向分辨率/m 30~200 飞行高度/km 379 刈幅宽度/km 35~40 海面高度相对测量精度/cm 5~10 -
[1] KAULA W M. The terrestrial environment: Solid-earth and ocean physics [EB/OL]. (1970-04-01)[2023-10-26]. https://ilrs.gsfc.nasa.gov/docs/williamstown_1968.pdf [2] CAO Y H, DONG C M, QIU Z H, et al. Corrections of mesoscale eddies and Kuroshio extension surface velocities derived from satellite altimeters[J]. Remote Sensing, 2022, 15(1): 184 doi: 10.3390/rs15010184 [3] DOGLIONI F, RICKER R, RABE B, et al. Sea surface height anomaly and geostrophic current velocity from altimetry measurements over the Arctic Ocean (2011-2020)[J]. Earth System Science Data, 2023, 15(1): 225-263 doi: 10.5194/essd-15-225-2023 [4] MORROW R, LE TRAON P Y. Recent advances in observing mesoscale ocean dynamics with satellite altimetry[J]. Advances in Space Research, 2012, 50(8): 1062-1076 doi: 10.1016/j.asr.2011.09.033 [5] WANG G H, SU J L, CHU P C. Mesoscale eddies in the South China Sea observed with altimeter data[J]. Geophysical Research Letters, 2003, 30(21): 2121 [6] ABLAIN M, MEYSSIGNAC B, ZAWADZKI L, et al. Uncertainty in satellite estimates of global mean sea-level changes, trend and acceleration[J]. Earth System Science Data, 2019, 11(3): 1189-1202 doi: 10.5194/essd-11-1189-2019 [7] CHEN X Y, ZHANG X B, CHURCH J A, et al. The increasing rate of global mean sea-level rise during 1993-2014[J]. Nature Climate Change, 2017, 7(7): 492-495 doi: 10.1038/nclimate3325 [8] ZHU C C, GUO J Y, YUAN J J, et al. SDUST2021GRA: global marine gravity anomaly model recovered from Ka-band and Ku-band satellite altimeter data[J]. Earth System Science Data, 2022, 14(10): 4589-4606 doi: 10.5194/essd-14-4589-2022 [9] SANDWELL D T, MÜLLER R D, SMITH W H F, et al. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure[J]. Science, 2014, 346(6205): 65-67 doi: 10.1126/science.1258213 [10] SMITH W H F, SANDWELL D T. Global sea floor topography from satellite altimetry and ship depth soundings[J]. Science, 1997, 277(5334): 1956-1962 doi: 10.1126/science.277.5334.1956 [11] FAN D, LI S S, LI X X, et al. Seafloor topography estimation from gravity anomaly and vertical gravity gradient using nonlinear iterative least square method[J]. Remote Sensing, 2020, 13(1): 64 doi: 10.3390/rs13010064 [12] HART-DAVIS M G, PICCIONI G, DETTMERING D, et al. EOT20: a global ocean tide model from multi-mission satellite altimetry[J]. Earth System Science Data, 2021, 13(8): 3869-3884 doi: 10.5194/essd-13-3869-2021 [13] LYARD F H, ALLAIN D J, CANCET M, et al. FES2014 global ocean tide atlas: design and performance[J]. Ocean Science, 2021, 17(3): 615-649 doi: 10.5194/os-17-615-2021 [14] SLATER T, SHEPHERD A, MCMILLAN M, et al. A new digital elevation model of Antarctica derived from CryoSat-2 altimetry[J]. The Cryosphere, 2018, 12(4): 1551-1562 doi: 10.5194/tc-12-1551-2018 [15] HELM V, HUMBERT A, MILLER H. Elevation and elevation change of Greenland and Antarctica derived from CryoSat-2[J]. The Cryosphere, 2014, 8(4): 1539-1559 doi: 10.5194/tc-8-1539-2014 [16] LAXON S, PEACOCK N, SMITH D. High interannual variability of sea ice thickness in the arctic region[J]. Nature, 2003, 425(6961): 947-950 doi: 10.1038/nature02050 [17] TILLING R L, RIDOUT A, SHEPHERD A. Estimating Arctic sea ice thickness and volume using CryoSat-2 radar altimeter data[J]. Advances in Space Research, 2018, 62(6): 1203-1225 doi: 10.1016/j.asr.2017.10.051 [18] LIU G M, SCHWARTZ F, TSENG K H, et al. Satellite altimetry for measuring river stages in remote regions[J]. Environmental Earth Sciences, 2018, 77(18): 639 doi: 10.1007/s12665-018-7823-6 [19] JIANG L G, NIELSEN K, ANDERSEN O B. Improvements in mountain lake monitoring from satellite altimetry over the past 30 years – lessons learned from Tibetan lakes[J]. Remote Sensing of Environment, 2023, 295: 113702 doi: 10.1016/j.rse.2023.113702 [20] MCGOOGAN J T, MILLER L S, BROWN G S, et al. The S-193 radar altimeter experiment[J]. Proceedings of the IEEE, 1974, 62(6): 793-803 doi: 10.1109/PROC.1974.9519 [21] MARSH J G, CHANG E S. Detailed gravimetric geoid confirmation of sea surface topography detected by the skylab S-193 altimeter in the Atlantic Ocean[J]. Journal of Geodesy, 1976, 50(3): 291-299 doi: 10.1007/BF02521967 [22] RAPP D H. Geos 3 data processing for the recovery of geoid undulations and gravity anomalies[J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B8): 3784-3792 doi: 10.1029/JB084iB08p03784 [23] BAUER E, HASSELMANN S, HASSELMANN K, et al. Validation and assimilation of Seasat altimeter wave heights using the WAM wave model[J]. Journal of Geophysical Research: Oceans, 1992, 97(C8): 12671-12682 doi: 10.1029/92JC01056 [24] HAXBY W F, WEISSEL J K. Evidence for small-scale mantle convection from Seasat altimeter data[J]. Journal of Geophysical Research: Solid Earth, 1986, 91(B3): 3507-3520 doi: 10.1029/JB091iB03p03507 [25] MARSH J G, KOBLINSKY C J, ZWALLY H J, et al. A global mean sea surface based upon GEOS 3 and Seasat altimeter data[J]. Journal of Geophysical Research Solid Earth, 1992, 97(B4): 4915-4921 doi: 10.1029/91JB03153 [26] SANDWELL D T, MCADOO D C. High-accuracy, high-resolution gravity profiles from 2 years of the Geosat exact repeat mission[J]. Journal of Geophysical Research: Oceans, 1990, 95(C3): 3049-3060 doi: 10.1029/JC095iC03p03049 [27] TRAN N, HANCOCK III D W, HAYNE G S, et al. Assessment of the cycle-to-cycle noise level of the Geosat Follow-On, TOPEX, and poseidon altimeters[J]. Journal of Atmospheric and Oceanic Technology, 2002, 19(12): 2095-2107 doi: 10.1175/1520-0426(2002)019<2095:AOTCTC>2.0.CO;2 [28] TAPLEY B D, RIES J C, DAVIS G W, et al. Precision orbit determination for TOPEX/POSEIDON[J]. Journal of Geophysical Research: Oceans, 1994, 99(C12): 24383-24404 doi: 10.1029/94JC01645 [29] DORANDEU J, ABLAIN M, FAUGÈRE Y, et al. Jason-1 global statistical evaluation and performance assessment: Calibration and cross-calibration results[J]. Marine Geodesy, 2004, 27(3/4): 345-372 [30] ABLAIN M, PHILIPPS S, PICOT N, et al. Jason-2 global statistical assessment and cross-calibration with Jason-1[J]. Marine Geodesy, 2010, 33(S1): 162-185 [31] FAUGERE Y, DORANDEU J, LEFEVRE F, et al. Envisat ocean altimetry performance assessment and cross-calibration[J]. Sensors, 2006, 6(3): 100-130 doi: 10.3390/s6030100 [32] BONNEFOND P, VERRON J, AUBLANC J, et al. The benefits of the Ka-Band as evidenced from the SARAL/AltiKa Altimetric mission: quality assessment and unique characteristics of AltiKa data[J]. Remote Sensing, 2018, 10(2): 83 doi: 10.3390/rs10010083 [33] TOURNADRE J, LAMBIN-ARTRU J, STEUNOU N. Cloud and rain effects on AltiKa/SARAL Ka-band Radar altimeter—Part I: modeling and mean annual data availability[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(6): 1806-1817 doi: 10.1109/TGRS.2008.2010130 [34] TOURNADRE J, LAMBIN-ARTRU J, STEUNOU N. Cloud and rain effects on AltiKa/SARAL Ka-Band radar altimeter—Part II: definition of a rain/cloud flag[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(6): 1818-1826 doi: 10.1109/TGRS.2008.2010127 [35] RANEY R K. The delay/Doppler radar altimeter[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(5): 1578-1588 doi: 10.1109/36.718861 [36] WINGHAM D J, FRANCIS C R, BAKER S, et al. CryoSat: A mission to determine the fluctuations in Earth’s land and marine ice fields[J]. Advances in Space Research, 2006, 37(4): 841-871 doi: 10.1016/j.asr.2005.07.027 [37] BOY F, DESJONQUERES J D, PICOT N, et al. CryoSat-2 SAR-mode over oceans: processing methods, global assessment, and benefits[J]. IEEE Transactions on Geo science and Remote Sensing, 2017, 55(1): 148-158 doi: 10.1109/TGRS.2016.2601958 [38] DONLON C J, BERRUTI B, BUONGIORNO A, et al. The global monitoring for environment and security (GMES) sentinel-3 mission[J]. Remote Sensing of Environment, 2012, 120: 37-57 doi: 10.1016/j.rse.2011.07.024 [39] Donlon C J, CULLEN R, GIULICCHI L, et al. The Copernicus Sentinel-6 mission: Enhanced continuity of satellite sea level measurements from space[J]. Remote Sensing of Environment, 2021, 258: 112395 doi: 10.1016/j.rse.2021.112395 [40] JIANG M F, XU K, WANG J M. Evaluation of Sentinel-6 altimetry data over ocean[J]. Remote Sensing, 2022, 15(1): 12 doi: 10.3390/rs15010012 [41] POLLARD B D, RODRIGUEZ E, VEILLEUX L, et al. The wide swath ocean altimeter: radar interferometry for global ocean mapping with centimetric accuracy [C]//IEEE Aerospace Conference. Big Sky, MT, USA: IEEE, 2002 [42] FJORTOFT R, GAUDIN J M, POURTHIE N, et al. KaRIn on SWOT: Characteristics of Near-Nadir Ka-Band interferometric SAR imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(4): 2172-2185 doi: 10.1109/TGRS.2013.2258402 [43] NASA/JPL. Water-watching satellite monitors warming ocean off California coast[EB/OL]. (2023-09-19)[2023-10-26]. https://swot.jpl.nasa.gov/news/107/water-watching-satellite-monitors-warming-ocean-off-california-coast/ [44] NASA/JPL. SWOT captures the Yukon River in Alaska[EB/OL]. (2023-09-11)[2023-10-26]. https://swot.jpl.nasa.gov/news/106/swot-captures-the-yukon-river-in-alaska/ [45] XU K, JIANG J S, LIU H G, et al. HY-2A radar altimeter design and in flight preliminary results[C]//2013 IEEE International Geoscience and Remote Sensing Symposium. Melbourne: IEEE, 2013 [46] QIN D, JIA Y J, LIN M S, et al. Performance evaluation of China’s first ocean dynamic environment satellite constellation[J]. Remote Sensing, 2023, 15(19): 4780 doi: 10.3390/rs15194780 [47] YU F J, QI J J, JIA Y J, et al. Evaluation of HY-2 series satellites mapping capability on mesoscale eddies[J]. Remote Sensing, 2022, 14(17): 4262 doi: 10.3390/rs14174262 [48] ZHANG S J, ZHOU R S, JIA Y J, et al. Performance of HaiYang-2 altimetric data in marine gravity research and a new global marine gravity model NSOAS22[J]. Remote Sensing, 2022, 14 (17) [49] WAN X Y, WANG H B, JIA Y J, et al. Performance of Haiyang-2 derived gravity field products in bathymetry inversion[J]. Remote Sensing, 2022, 15(1): 32 doi: 10.3390/rs15010032 [50] ZHONG W Q, JIANG M F, XU K, et al. Arctic sea ice lead detection from Chinese HY-2B radar altimeter data[J]. Remote Sensing, 2023, 15(2): 516 doi: 10.3390/rs15020516 [51] JIANG M F, ZHONG W Q, XU K, et al. Estimation of Arctic Sea Ice thickness from Chinese HY-2B radar altimetry data[J]. Remote Sensing, 2023, 15(5): 1180 doi: 10.3390/rs15051180 [52] DONG Z Q, SHI L J, LIN M S, et al. Feasibility of retrieving Arctic sea ice thickness from the Chinese HY-2B Ku-band radar altimeter[J]. The Cryosphere, 2023, 17(3): 1389-1410 doi: 10.5194/tc-17-1389-2023 [53] PHILIP A, TABURET G, CHARLES E, et al. HY-2B now used operationally in multi-mission sea level and wave systems [EB/OL]. (2020-10-19)[2023-10-26]. https://ostst.aviso.altimetry.fr/fileadmin/user_upload/tx_ausyclsseminar/files/OSTST_2020_HY2B_feedbacks_and_contribution.pdf [54] LABROUE S, RAYNAL M, PIRIZ F, et al. Performance of the altimetry constellation: contribution of HY2B mission [EB/OL]. (2019-10-23)[2023-10-26]. https://ostst.aviso.altimetry.fr/programs/abstracts-details.html?tx_ausyclsseminar_pi2%5BobjAbstracte%5D=2772&cHash=524847cb8397fe1cedc24474fdd8e741 [55] AOUF L, WANG J, DALPHINET A. On the assessement of the assimilation of HY2B Significant wave height in the wave model MFWAM (2020-10-19)[2023-10-26]. https://ostst.aviso.altimetry.fr/fileadmin/user_upload/tx_ausyclsseminar/files/OSTST2020_LAouf_HY2B.pdf [56] 王磊, 许可, 史灵卫, 等. 一种消除合成孔径雷达高度计延迟校正中残余误差的新算法及仿真验证[J]. 电子与信息学报, 2015, 37(11): 2713-2718 doi: 10.11999/JEIT150282WANG Lei, XU Ke, SHI Lingwei, et al. A new range migration correction algorithm and its simulation for SAR altimeter[J]. Journal of Electronics & Information Technology, 2015, 37(11): 2713-2718 doi: 10.11999/JEIT150282 [57] SHI L, XU K, LIU P, et al. Height precision of SAR altimeter and conventional radar altimeter based on flight experimental data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(6): 2676-2686 doi: 10.1109/JSTARS.2016.2550030 [58] 王佳明, 许可, 蒋茂飞. 基于加权最小二乘的合成孔径高度计重跟踪估计器设计与验证[J]. 电子与信息学报, 2022, 44(6): 2135-2142 doi: 10.11999/JEIT210354WANG Jiaming, XU Ke, JIANG Maofei. Design and verification of retracking estimator for synthetic aperture altimeter based on weighted least squares[J]. Journal of Electronics & Information Technology, 2022, 44(6): 2135-2142 doi: 10.11999/JEIT210354 [59] 王佳明, 许可, 蒋茂飞. 一种用于合成孔径高度计的开环抗混叠滤波方法[J]. 遥感技术与应用, 2023, 38(3): 680-687WANG Jiaming, XU Ke, JIANG Maofei. An open burst anti-aliasing filtering method for Synthetic Aperture Radar Altimeter[J]. Remote Sensing Technology and Application, 2023, 38(3): 680-687 [60] 张云华, 姜景山, 张祥坤, 等. 三维成像雷达高度计机载原理样机及机载试验[J]. 电子学报, 2004, 32(6): 899-902 doi: 10.3321/j.issn:0372-2112.2004.06.005ZHANG Yunhua, JIANG Jingshan, ZHANG Xiangkun, et al. Principle model and preliminary flight experiment of the three-dimensional imaging radar altimeter[J]. Acta Electronica Sinica, 2004, 32(6): 899-902 doi: 10.3321/j.issn:0372-2112.2004.06.005 [61] REN L, YANG J S, DONG X, et al. Preliminary evaluation and correction of sea surface height from Chinese Tiangong-2 Interferometric imaging radar altimeter[J]. Remote Sensing, 2020, 12(15): 2496 doi: 10.3390/rs12152496 [62] SUN M, ZHANG Y, DONG X, et al. Preliminary results of marine gravity recovery by Tiangong-2 interferometric imaging radar altimeter[J]. Remote Sensing, 2023, 15: 4759 doi: 10.3390/rs15194759 -
-