-
摘要: 新型电磁弹射式微重力装置采用直线电机带动实验舱进行垂直运动来模拟微重力环境。与传统落塔相比,通过弹射方式进行抛物线运动能大大延长装置提供微重力环境的时间,但直线电机的驱动也为保证实验舱内的高微重力水平带来新的挑战。为了确保电机驱动下的实验舱环境能够满足微重力科学的实验要求,本文对电磁弹射落塔的多组电机分段拖动系统进行模型分析并提出分段控制方案,对影响微重力水平的电机协同问题和内外舱配合问题设计了位移-跟踪控制算法,最终实现了外舱低扰动和内舱高微重力的指标。目前实际系统已经建成并投入应用,采用了论文的电机系统控制方法,可以实现4s的高微重力水平控制,对于微重力科学实验装置的研究提供支撑作用。Abstract: The new electromagnetic catapult microgravity device employs linear motors to drive the experimental module in vertical motion, simulating a microgravity environment. In comparison to traditional drop tower methods, utilizing a catapult for parabolic motion significantly extends the duration microgravity time. However, the linear motor's drive introduces new challenges in ensuring a high level of microgravity quality. To meet the experimental requirements of microgravity science, this paper conducts a model analysis of the segmented dragging system of the electromagnetic catapult drop tower. It proposes a segmented control scheme and designs a displacement-tracking control algorithm for addressing motor coordination issues affecting microgravity levels and the coordination between inner capsule and outer capsule. This ultimately achieves prevention of disturbance from outer capsule to the inner capsule. The practical system has been constructed and put into operation, employing the motor control method outlined in the paper, enabling microgravity time around 4 seconds. This research provides crucial support for the development of microgravity experimental devices.
-
-
计量
- 文章访问数: 327
- HTML全文浏览量: 48
- PDF下载量: 30
-
被引次数:
0(来源:Crossref)
0(来源:其他)