留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ASIC芯片的多探测单元设计与验证

张鑫 徐婉秋 白超平 孙越强 王文静 张帅 韩建伟 陈睿 朱翔 李悦

张鑫, 徐婉秋, 白超平, 孙越强, 王文静, 张帅, 韩建伟, 陈睿, 朱翔, 李悦. 基于ASIC芯片的多探测单元设计与验证[J]. 空间科学学报, 2024, 44(1): 178-184. doi: 10.11728/cjss2024.01.2023-0018
引用本文: 张鑫, 徐婉秋, 白超平, 孙越强, 王文静, 张帅, 韩建伟, 陈睿, 朱翔, 李悦. 基于ASIC芯片的多探测单元设计与验证[J]. 空间科学学报, 2024, 44(1): 178-184. doi: 10.11728/cjss2024.01.2023-0018
ZHANG Xin, XU Wanqiu, BAI Chaoping, SUN Yueqiang, WANG Wenjing, ZHANG Shuai, HAN Jianwei, CHEN Rui, ZHU Xiang, LI Yue. Design and Verification of Multi-detection Unit Based on ASIC Chip (in Chinese). Chinese Journal of Space Science, 2024, 44(1): 178-184 doi: 10.11728/cjss2024.01.2023-0018
Citation: ZHANG Xin, XU Wanqiu, BAI Chaoping, SUN Yueqiang, WANG Wenjing, ZHANG Shuai, HAN Jianwei, CHEN Rui, ZHU Xiang, LI Yue. Design and Verification of Multi-detection Unit Based on ASIC Chip (in Chinese). Chinese Journal of Space Science, 2024, 44(1): 178-184 doi: 10.11728/cjss2024.01.2023-0018

基于ASIC芯片的多探测单元设计与验证

doi: 10.11728/cjss2024.01.2023-0018 cstr: 32142.14.cjss2024.01.2023-0018
详细信息
    作者简介:
    • 张鑫:男, 1977年3月出生于河北省邢台市, 现为中国科学院国家空间科学中心特聘研究员, 空间环境探测总体技术室主任, 主要研究方向为空间天气探测技术研究以及神经网络在空间探测技术中的应用研究等. E-mail: xinzhang@nssc.ac.cn
  • 中图分类号: TL8,V443

Design and Verification of Multi-detection Unit Based on ASIC Chip

  • 摘要: 以空间辐射环境中的粒子为研究目标, 研制了用硅微条传感器作为探头、用集成芯片IDE3160进行信号处理的空间粒子探测系统. 该系统采用两片硅微条传感器组成的硅微条探测阵列作为前端探头, 并应用数字化的信号处理方法, 获取空间粒子入射的位置及在硅微条内单位长度沉积的能量(线性能量传递, LET). 从诱发单粒子效应的物理机制角度, 对比重离子和脉冲激光在硅半导体中所产生物理效应的不同. 采用1.064 μm脉冲激光开展系统测试, 获得良好的LET线性结果: 该系统数据采集所需时间为2.47 ms, 可探测到的LET阈值约为0.1 MeV·cm2·mg–1, 皮尔逊相关系数(PCC)达0.998, 表明系统测量结果与理论设计符合性良好. 该系统动态范围宽、线性度好, 具有较高的集成度、可拓展性及可移植性, 可以搭载在各种空间探测卫星上.

     

  • 图  1  探测系统整体结构

    Figure  1.  Overall structure of the detection system

    图  2  硅微条探测阵列结构

    Figure  2.  Structure of silicon strip detection array

    图  3  硅微条探测阵列定位原理

    Figure  3.  Positioning schematic diagram of silicon strip detection array

    图  4  IDE3160单通道结构

    Figure  4.  IDE3160 single-channel structure

    图  5  电流–电压转换电路

    Figure  5.  Current-voltage conversion circuit

    图  6  数据采集模块逻辑设计

    Figure  6.  Logical design of data acquisition module

    图  7  状态控制模块工作流程

    Figure  7.  Work flow of status control module

    图  8  激光穿透深度与波长关系

    Figure  8.  Relation between laser penetration depth and wavelength

    图  9  系统线性测试结果

    Figure  9.  Linear test results of the system

    表  1  IDE3160主要参数

    Table  1.   Parameters of the IDE3160

    参数典型值
    通道数32
    动态范围/pC–5 ~ +13
    等效噪声电荷/pF–13516+7.6
    差分输出增益/(μA·Fc–1)0.14
    功耗/mW203
    下载: 导出CSV

    表  2  硅半导体和激光脉冲的参量

    Table  2.   Parameters for calculating the equivalent LET value of the laser pulse

    λ/μmηα/cm–1Eion/eV$\rho /(\mathrm{m}\mathrm{g}\cdot {\mathrm{c}\mathrm{m} }^{-3})$
    1.0640.2675103.62330
    下载: 导出CSV
  • [1] HOLMES-SIEDLE A, ADAMS L. Handbook of Radiation Effects[M]. Oxford: Oxford University Press, 1993
    [2] WANG Xiaohai. Development status and trend of space environment detection technology[J]. Satellite & Network, 2015(8): 60-65 doi: 10.3969/j.issn.1672-965X.2015.08.014
    [3] YE Zonghai. Space Particle Radiation Detection Technology[M]. Beijing: Science Press, 1986
    [4] CHENG Yumin, LAN Xiaofei, SHI Zongren, et al. Development of space charged particle detection system of telescope style[J]. Spacecraft Environment Engineering, 2016, 33(4): 364-369 doi: 10.12126/see.2016.04.005
    [5] SPIELER H. Front-end electronics and trigger systems—Status and challenges[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2007, 581(1/2): 65-79
    [6] FRIEDL M, IRMLER C, PERNICKA M. Readout of silicon strip detectors with position and timing information[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 598(1): 82-83
    [7] CAMPABADAL F, FLETA C, KEY M, et al. Design and performance of the ABCD3 TA ASIC for readout of silicon strip detectors in the ATLAS semiconductor tracker[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 552(3): 292-328
    [8] TENG Yang. The Design and Implementation of Space Particle Detection System[D]. Harbin: Harbin Engineering University, 2015
    [9] YANG Chuibai, ZHANG Kunyi, WANG Yue, et al. On overview of utilization of semiconductor detector in space particles measurements[C]//Proceedings of the 26 th National Conference on Space Exploration, Space Exploration Committee of Chinese Society for Space Science. Qionghai: Chinese Society of Space Science, 2013: 562-567
    [10] 任益文, 郭建华, 汪慎. 基于VA32 TA5电荷测量系统的设计和实现[J]. 空间科学学报, 2016, 36(3): 395-400 doi: 10.11728/cjss2016.03.395

    REN Yiwen, GUO Jianhua, WANG Shen. Design and realization of charge measurement system based on VA32 TA5[J]. Chinese Journal of Space Science, 2016, 36(3): 395-400 doi: 10.11728/cjss2016.03.395
    [11] ZHAO Hongyun. The Research and Implementation of the Readout System for A New Plastic Scintillator Array Detector[D]. Lanzhou: Institute of Modern Physics, Chinese Academy of Sciences, 2015
    [12] YANG Haibo. Signals Reading Method and Circuit Design for Multiple Detection Unit Based on the Advanced ASIC Chips[D]. Lanzhou: Institute of Modern Physics, Chinese Academy of Sciences, 2015
    [13] ARAKCHEEV A, AULCHENKO V, KUDRYAVTSEV V, et al. Operation of silicon microstrip detector with integrating readout for fast time-resolved experiments[J]. Journal of Instrumentation, 2020, 15(6): C05065
    [14] ZHANG Xin, XU Wanqiu, BAI Chaoping, et al. The invention relates to a silicon micro-strip detector reading circuit and reading method: China, 112649833 B[P]. 2023-02-17
    [15] XU Wanqiu. Design and Implementation of Silicon Micro-Strip Detection System[D]. Beijing: National Space Science Center, Chinese Academy of Sciences, 2021
    [16] TORSTI J, VALTONEN E, LUMME M, et al. Energetic particle experiment ERNE[J]. Solar Physics, 1995, 162(1/2): 505-531
    [17] WIEDENBECK M E, CHRISTIAN E R, COOK III W R, et al. Two-dimensional position-sensitive silicon detectors for the ACE solar isotope spectrometer[C]//Proceedings of SPIE 2806, Gamma-Ray and Cosmic-Ray Detectors, Techniques, and Missions. Denver: SPIE, 1996
    [18] STONE E, COHEN C M S, COOK W R, et al. The cosmic-ray isotope spectrometer for the advanced composition explorer[J]. Space Science Reviews, 1998, 86(1/2/3/4): 285-356
    [19] COOK W R, CUMMINGS A C, CUMMINGS J R, et al. MAST: a mass spectrometer telescope for studies of the isotopic composition of solar, anomalous, and galactic cosmic ray nuclei[J]. IEEE Transactions on Geoscience and Remote Sensing, 1993, 31(3): 557-564 doi: 10.1109/36.225522
    [20] HAN Jianwei, SHANGGUAN Shipeng, MA Yingqi, et al. Research progress for single event effects of space payloads by pulsed laser simulation[J]. Journal of Deep Space Exploration, 2017, 4(6): 577-584 doi: 10.15982/j.issn.2095-7777.2017.12.012
    [21] HUANG Jianguo, HAN Jianwei. The mechanism for SEU simulation by pulsed laser[J]. Science in China Series G: Physics, Mechanics and Astronomy, 2004, 47(5): 540-549 doi: 10.1360/03ye0274
    [22] QIAO Kai, GAO Chao, GAO Xiujuan, et al. Discussion on the laser threat and protection system for optical remote sensing satellites[J]. Spacecraft Recovery & Remote Sensing, 2021, 42(2): 59-67
    [23] XUE Yuxiong, TIAN Kai, CAO Zhou, et al. An overview of pulsed laser simulation facility for single event effects and testing[J]. Spacecraft Environment Engineering, 2010, 27(3): 304-312
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  407
  • HTML全文浏览量:  128
  • PDF下载量:  59
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-02-08
  • 录用日期:  2023-10-04
  • 修回日期:  2023-04-12
  • 网络出版日期:  2023-08-01

目录

    /

    返回文章
    返回