[1] |
LIU L B, WAN W X, CHEN Y D, et al. Solar activity effects of the ionosphere: a brief review[J]. Chinese Science Bulletin, 2011, 56(12): 1202-1211 doi: 10.1007/s11434-010-4226-9
|
[2] |
YAO Y B, ZHAI C Z, KONG J, et al. Contribution of solar radiation and geomagnetic activity to global structure of 27-day variation of ionosphere[J]. Journal of Geodesy, 2017, 91(11): 1299-1311 doi: 10.1007/s00190-017-1026-x
|
[3] |
李涌涛, 李建文, 代桃高, 等. 太阳活动对电离层TEC变化影响分析[J]. 空间科学学报, 2018, 38(6): 847-854 doi: 10.11728/cjss2018.06.847LI Yongtao, LI Jianwen, DAI Taogao, et al. Influence of solar activity on ionospheric TEC change[J]. Chinese Journal of Space Science, 2018, 38(6): 847-854 doi: 10.11728/cjss2018.06.847
|
[4] |
徐中华, 刘瑞源, 刘顺林, 等. 南极中山站电离层F2层临界频率变化特征[J]. 地球物理学报, 2006, 49(1): 1-8 doi: 10.3321/j.issn:0001-5733.2006.01.001XU Zhonghua, LIU Ruiyuan, LIU Shunlin, et al. Variations of the ionospheric F2 layer critical frequency at Zhongshan Station, Antarctica[J]. Chinese Journal of Geophysics, 2006, 49(1): 1-8 doi: 10.3321/j.issn:0001-5733.2006.01.001
|
[5] |
余涛, 万卫星, 刘立波, 等. 利用IGS数据分析全球TEC的周年和半年变化特性[J]. 地球物理学报, 2006, 49(4): 943-949YU Tao, WAN Weixing, LIU Libo, et al. Using IGS data to analysis the global TEC annual and semiannual variation[J]. Chinese Journal of Geophysics, 2006, 49(4): 943-949
|
[6] |
LIU L B, ZHAO B Q, WAN W X, et al. Seasonal variations of the ionospheric electron densities retrieved from Constellation Observing System for Meteorology, Ionosphere, and Climate mission radio occultation measurements[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A2): A02302
|
[7] |
翁利斌, 方涵先, 张阳, 等. Athens地区电离层TEC、 Nm F2以及板厚[J]. 地球物理学报, 2012, 55(11): 3558-3567 doi: 10.6038/j.issn.0001-5733.2012.11.005WENG Libin, FANG Hanxian, ZHANG Yang, et al. Ionospheric TEC, Nm F2 and slab thickness over the Athens region[J]. Chinese Journal of Geophysics, 2012, 55(11): 3558-3567 doi: 10.6038/j.issn.0001-5733.2012.11.005
|
[8] |
QIAN L Y, BURNS A G, SOLOMON S C, et al. Annual/semiannual variation of the ionosphere[J]. Geophysical Research Letters, 2013, 40(10): 1928-1933 doi: 10.1002/grl.50448
|
[9] |
刘桢迪, 方涵先, 翁利斌, 等. 基于CHAMP、GRACE和COSMIC掩星数据的全球电离层 hm F2建模研究[J]. 地球物理学报, 2016, 59(10): 3555-3565 doi: 10.6038/cjg20161003LIU Zhendi, FANG Hanxian, WENG Libin, et al. Global model of ionospheric hm F2 based on CHAMPE, GRACE and COSMIC radio occultation[J]. Chinese Journal of Geophysics, 2016, 59(10): 3555-3565 doi: 10.6038/cjg20161003
|
[10] |
MOSES M, PANDA S K, SHARMA S K, et al. Ionospheric electron density characteristics over Africa from FORMOSAT-3/COSMIC radio occultation[J]. Astrophysics and Space Science, 2020, 365(7): 116 doi: 10.1007/s10509-020-03833-2
|
[11] |
蓝加平, 刘凯, 朱正平. 中国东部地区电离层 f0 F2 在第22~23太阳活动周时空变化特性[J]. 中南民族大学学报(自然科学版), 2022, 41(2): 186-193LAN Jiaping, LIU Kai, ZHU Zhengping. Temporal and spatial variation features of ionospheric f0 F2 in Eastern China during the 22-23 solar activity cycle[J]. Journal of South-Central Minzu University (Natural Science Edition), 2022, 41(2): 186-193
|
[12] |
陈林峰, 程云鹏. 基于COSMIC数据开展全球电离层foF2建模及变化特征研究[J]. 科学技术与工程, 2022, 22(34): 15036-15042CHEN Linfeng, CHENG Yunpeng. Model and investigate the global ionospheric foF2 based on COSMIC observation[J]. Science Technology and Engineering, 2022, 22(34): 15036-15042
|
[13] |
LIU Z D, FANG H X, HOQUE M M, et al. A new empirical model of Nm F2 based on CHAMP, GRACE, and COSMIC radio occultation[J]. Remote Sensing, 2019, 11(11): 1386 doi: 10.3390/rs11111386
|
[14] |
TORRENCE C, COMPO G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1): 61-78 doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
|
[15] |
翁利斌, 方涵先, 张阳, 等. 基于小波与交叉小波分析的太阳黑子与宇宙线相关性研究[J]. 空间科学学报, 2013, 33(1): 13-19 doi: 10.11728/cjss2013.01.013WENG Libin, FANG Hanxian, ZHANG Yang, et al. Correlation research between the sunspot numbers and the cosmic rays based on wavelet and cross wavelet analysis[J]. Chinese Journal of Space Science, 2013, 33(1): 13-19 doi: 10.11728/cjss2013.01.013
|
[16] |
CAI X G, WANG W B, EASTES R W, et al. Equatorial ionization anomaly discontinuity observed by GOLD, COSMIC-2, and ground-based GPS receivers' network[J]. Geophysical Research Letters, 2023, 50(10): e2023GL102994 doi: 10.1029/2023GL102994
|
[17] |
LUAN X L, WANG P, DOU X K, et al. Interhemispheric asymmetry of the equatorial ionization anomaly in solstices observed by COSMIC during 2007–2012[J]. Journal of Geophysical Research: Space Physics, 2015, 120(4): 3059-3073 doi: 10.1002/2014JA020820
|
[18] |
LI B, CUI R F, WENG L B. Thermospheric density response to the QBO signal[J]. Atmosphere, 2023, 14(8): 1317 doi: 10.3390/atmos14081317
|