留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全球电离层峰值参数的季节变化

李波 崔瑞飞 翁利斌

李波, 崔瑞飞, 翁利斌. 全球电离层峰值参数的季节变化[J]. 空间科学学报, 2024, 44(1): 60-70. doi: 10.11728/cjss2024.01.2023-0130
引用本文: 李波, 崔瑞飞, 翁利斌. 全球电离层峰值参数的季节变化[J]. 空间科学学报, 2024, 44(1): 60-70. doi: 10.11728/cjss2024.01.2023-0130
LI Bo, CUI Ruifei, WENG Libin. Seasonal Variations of Global Ionospheric NmF2 and hmF2 (in Chinese). Chinese Journal of Space Science, 2024, 44(1): 60-70 doi: 10.11728/cjss2024.01.2023-0130
Citation: LI Bo, CUI Ruifei, WENG Libin. Seasonal Variations of Global Ionospheric NmF2 and hmF2 (in Chinese). Chinese Journal of Space Science, 2024, 44(1): 60-70 doi: 10.11728/cjss2024.01.2023-0130

全球电离层峰值参数的季节变化

doi: 10.11728/cjss2024.01.2023-0130 cstr: 32142.14.cjss2024.01.2023-0130
基金项目: 国家重点研发计划项目(2023YFC2808900), 国家自然科学基金项目(42104162)和湖南省自然科学基金项目(2021JJ40670)共同资助
详细信息
    作者简介:
    • 李波:男, 1986年12月出生于湖南省衡阳市. 现为国防科技大学气象海洋学院博士研究生, 主要研究方向为地球对流层大气与中高层大气相互作用. E-mail: libo_typhoon@aliyun.com
    通讯作者:
    • 男, 1986年7月出生于江苏省宿迁市. 现为国防科技大学气象海洋学院副教授, 硕士生导师, 主要研究方向为地球电离层和中高层大气. E-mail: wenglibin@nudt.edu.cn
  • 中图分类号: P352

Seasonal Variations of Global Ionospheric NmF2 and hmF2

  • 摘要: 针对全球电离层峰值参数的季节变化问题, 使用2006-2019年COSMIC掩星电离层月均值数据和小波分析方法分析了全球电离层NmF2hmF2季节变化特征, 结果表明: 电离层NmF2hmF2随地方时、季节、纬度存在显著差异, 电离层峰值参数均与太阳活动水平表现出正相关性, 月均值相关系数分别达到了0.9和0.8以上; 正午电离层NmF2在太阳活动高年期间存在显著年、半年等季节变化特征, 午夜基本以年变化为主, 且南半球电离层NmF2季节变化特征更为明显; 正午电离层hmF2所有年份均存在显著年变化特征, 午夜期间季节性变化特征不太明显, 且南半球电离层hmF2季节变化特征强于北半球; 电离层峰值参数的季节变化规律在太阳活动高年期间更为显著; 太阳活动指数和电离层峰值参数中似乎存在25~35个月的周期信号, 但未通过显著性检验, 综合分析研究认为电离层中的等离子体不会受到QBO现象影响.

     

  • 图  1  2006年第365天COSMIC掩星全球分布(a)和2006-2019年期间年均有效观测数据量变化趋势(b)

    Figure  1.  Global distribution of COSMIC data on the 365th day of 2006 (a) and yearlyeffective data number from 2006 to 2019 (b)

    图  2  2006-2019年期间太阳F10.7指数和地磁Kp指数

    Figure  2.  Daily and 81-day average solar F10.7 index and geomagnetic Kp index during 2006-2019

    图  3  2006-2019年正午(a)和午夜(b)期间电离层NmF2月均值随时间和纬度变化(空白处为数据探测缺失时段)

    Figure  3.  Monthly ionospheric NmF2 in noon (a) and midnight (b) during 2006-2019, and the blank is the missed measurements

    图  4  2006-2019年正午(a)和午夜(b)期间电离层hmF2月均值随时间和纬度变化(空白处为数据探测缺失时段)

    Figure  4.  Monthly ionospheric hmF2 in noon (a) and midnight (b) during 2006-2019 (the blank is the missed measurements)

    图  5  2006-2019年期间太阳F10.7指数和地磁Kp指数周期分析结果(黑线为通过95%置信检验的区域)

    Figure  5.  Periodic results of solar F10.7 and geomagnetic Kp during 2006-2019 (thick contour encloses regions of greater than 95% significance level)

    图  6  2006-2019年期间正午时间南半球不同纬度和赤道区域电离层NmF2 hmF2 周期特性(黑线为通过95%置信检验的区域)

    Figure  6.  Periodic results of the ionospheric NmF2 and hmF2 in noontime at southern hemisphere and equator during 2006-2019 (Thick contour encloses regions of greater than 95% significance level)

    图  7  2006-2019年期间正午时间北半球不同纬度区域电离层NmF2hmF2 周期特性(黑线为通过95%置信检验的区域)

    Figure  7.  Periodic results of the ionospheric NmF2 and hmF2 in noontime at northern hemisphere during 2006-2019 (Thick contour encloses regions of greater than 95% significance level)

    图  8  2006-2019年期间午夜时间南半球不同纬度和赤道区域电离层NmF2 hmF2 周期特性 (黑线为通过95%置信检验的区域)

    Figure  8.  Periodic results of the ionospheric NmF2 and hmF2 in nighttime at southern hemisphere and equator during 2006-2019 (thick contour encloses regions of greater than 95% significance level)

    图  9  2006-2019年期间午夜时间北半球不同纬度区域电离层NmF2 hmF2 周期特性(黑线为通过95%置信检验的区域)

    Figure  9.  Periodic results of the ionospheric NmF2 and hmF2 in nighttime at northern hemisphere during 2006-2019 (thick contour encloses regions of greater than 95% significance level)

  • [1] LIU L B, WAN W X, CHEN Y D, et al. Solar activity effects of the ionosphere: a brief review[J]. Chinese Science Bulletin, 2011, 56(12): 1202-1211 doi: 10.1007/s11434-010-4226-9
    [2] YAO Y B, ZHAI C Z, KONG J, et al. Contribution of solar radiation and geomagnetic activity to global structure of 27-day variation of ionosphere[J]. Journal of Geodesy, 2017, 91(11): 1299-1311 doi: 10.1007/s00190-017-1026-x
    [3] 李涌涛, 李建文, 代桃高, 等. 太阳活动对电离层TEC变化影响分析[J]. 空间科学学报, 2018, 38(6): 847-854 doi: 10.11728/cjss2018.06.847

    LI Yongtao, LI Jianwen, DAI Taogao, et al. Influence of solar activity on ionospheric TEC change[J]. Chinese Journal of Space Science, 2018, 38(6): 847-854 doi: 10.11728/cjss2018.06.847
    [4] 徐中华, 刘瑞源, 刘顺林, 等. 南极中山站电离层F2层临界频率变化特征[J]. 地球物理学报, 2006, 49(1): 1-8 doi: 10.3321/j.issn:0001-5733.2006.01.001

    XU Zhonghua, LIU Ruiyuan, LIU Shunlin, et al. Variations of the ionospheric F2 layer critical frequency at Zhongshan Station, Antarctica[J]. Chinese Journal of Geophysics, 2006, 49(1): 1-8 doi: 10.3321/j.issn:0001-5733.2006.01.001
    [5] 余涛, 万卫星, 刘立波, 等. 利用IGS数据分析全球TEC的周年和半年变化特性[J]. 地球物理学报, 2006, 49(4): 943-949

    YU Tao, WAN Weixing, LIU Libo, et al. Using IGS data to analysis the global TEC annual and semiannual variation[J]. Chinese Journal of Geophysics, 2006, 49(4): 943-949
    [6] LIU L B, ZHAO B Q, WAN W X, et al. Seasonal variations of the ionospheric electron densities retrieved from Constellation Observing System for Meteorology, Ionosphere, and Climate mission radio occultation measurements[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A2): A02302
    [7] 翁利斌, 方涵先, 张阳, 等. Athens地区电离层TEC、 Nm F2以及板厚[J]. 地球物理学报, 2012, 55(11): 3558-3567 doi: 10.6038/j.issn.0001-5733.2012.11.005

    WENG Libin, FANG Hanxian, ZHANG Yang, et al. Ionospheric TEC, Nm F2 and slab thickness over the Athens region[J]. Chinese Journal of Geophysics, 2012, 55(11): 3558-3567 doi: 10.6038/j.issn.0001-5733.2012.11.005
    [8] QIAN L Y, BURNS A G, SOLOMON S C, et al. Annual/semiannual variation of the ionosphere[J]. Geophysical Research Letters, 2013, 40(10): 1928-1933 doi: 10.1002/grl.50448
    [9] 刘桢迪, 方涵先, 翁利斌, 等. 基于CHAMP、GRACE和COSMIC掩星数据的全球电离层 hm F2建模研究[J]. 地球物理学报, 2016, 59(10): 3555-3565 doi: 10.6038/cjg20161003

    LIU Zhendi, FANG Hanxian, WENG Libin, et al. Global model of ionospheric hm F2 based on CHAMPE, GRACE and COSMIC radio occultation[J]. Chinese Journal of Geophysics, 2016, 59(10): 3555-3565 doi: 10.6038/cjg20161003
    [10] MOSES M, PANDA S K, SHARMA S K, et al. Ionospheric electron density characteristics over Africa from FORMOSAT-3/COSMIC radio occultation[J]. Astrophysics and Space Science, 2020, 365(7): 116 doi: 10.1007/s10509-020-03833-2
    [11] 蓝加平, 刘凯, 朱正平. 中国东部地区电离层 f0 F2 在第22~23太阳活动周时空变化特性[J]. 中南民族大学学报(自然科学版), 2022, 41(2): 186-193

    LAN Jiaping, LIU Kai, ZHU Zhengping. Temporal and spatial variation features of ionospheric f0 F2 in Eastern China during the 22-23 solar activity cycle[J]. Journal of South-Central Minzu University (Natural Science Edition), 2022, 41(2): 186-193
    [12] 陈林峰, 程云鹏. 基于COSMIC数据开展全球电离层foF2建模及变化特征研究[J]. 科学技术与工程, 2022, 22(34): 15036-15042

    CHEN Linfeng, CHENG Yunpeng. Model and investigate the global ionospheric foF2 based on COSMIC observation[J]. Science Technology and Engineering, 2022, 22(34): 15036-15042
    [13] LIU Z D, FANG H X, HOQUE M M, et al. A new empirical model of Nm F2 based on CHAMP, GRACE, and COSMIC radio occultation[J]. Remote Sensing, 2019, 11(11): 1386 doi: 10.3390/rs11111386
    [14] TORRENCE C, COMPO G P. A practical guide to wavelet analysis[J]. Bulletin of the American Meteorological Society, 1998, 79(1): 61-78 doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
    [15] 翁利斌, 方涵先, 张阳, 等. 基于小波与交叉小波分析的太阳黑子与宇宙线相关性研究[J]. 空间科学学报, 2013, 33(1): 13-19 doi: 10.11728/cjss2013.01.013

    WENG Libin, FANG Hanxian, ZHANG Yang, et al. Correlation research between the sunspot numbers and the cosmic rays based on wavelet and cross wavelet analysis[J]. Chinese Journal of Space Science, 2013, 33(1): 13-19 doi: 10.11728/cjss2013.01.013
    [16] CAI X G, WANG W B, EASTES R W, et al. Equatorial ionization anomaly discontinuity observed by GOLD, COSMIC-2, and ground-based GPS receivers' network[J]. Geophysical Research Letters, 2023, 50(10): e2023GL102994 doi: 10.1029/2023GL102994
    [17] LUAN X L, WANG P, DOU X K, et al. Interhemispheric asymmetry of the equatorial ionization anomaly in solstices observed by COSMIC during 2007–2012[J]. Journal of Geophysical Research: Space Physics, 2015, 120(4): 3059-3073 doi: 10.1002/2014JA020820
    [18] LI B, CUI R F, WENG L B. Thermospheric density response to the QBO signal[J]. Atmosphere, 2023, 14(8): 1317 doi: 10.3390/atmos14081317
  • 加载中
图(9)
计量
  • 文章访问数:  661
  • HTML全文浏览量:  205
  • PDF下载量:  81
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-11-14
  • 修回日期:  2023-12-12
  • 网络出版日期:  2023-12-22

目录

    /

    返回文章
    返回