留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

附有集中质量的飞艇囊体材料动力特性

程靖淞 王生 聂营 宋林

程靖淞, 王生, 聂营, 宋林. 附有集中质量的飞艇囊体材料动力特性[J]. 空间科学学报, 2024, 44(2): 346-355. doi: 10.11728/cjss2024.02.2023-0008
引用本文: 程靖淞, 王生, 聂营, 宋林. 附有集中质量的飞艇囊体材料动力特性[J]. 空间科学学报, 2024, 44(2): 346-355. doi: 10.11728/cjss2024.02.2023-0008
CHENG Jingsong, WANG Sheng, NIE Ying, SONG Lin. Dynamic Characteristics of Airship Envelope Material with Concentrated Mass (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 346-355 doi: 10.11728/cjss2024.02.2023-0008
Citation: CHENG Jingsong, WANG Sheng, NIE Ying, SONG Lin. Dynamic Characteristics of Airship Envelope Material with Concentrated Mass (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 346-355 doi: 10.11728/cjss2024.02.2023-0008

附有集中质量的飞艇囊体材料动力特性

doi: 10.11728/cjss2024.02.2023-0008 cstr: 32142.14.cjss2024.02.2023-0008
基金项目: 中国科学院战略性先导科技专项(A类)项目资助(XDA17020103)
详细信息
    作者简介:
    • 程靖淞:男, 1997年7月出生于山西省朔州市, 现为中国科学院空天信息创新研究院硕士研究生, 主要研究方向为平流层飞艇动力学特性、结构动力学仿真与分析等. E-mail: chengjingsong20@mails.ucas.ac.cn
    通讯作者:
    • 男, 1963年10月出生于河北省玉田县, 现为中国科学院空天信息创新研究院研究员, 博士生导师, 主要研究方向为飞行器总体技术、结构动力学与控制、计算机应用技术等. E-mail: shengwang@aoe.ac.cn
  • 中图分类号: V274

Dynamic Characteristics of Airship Envelope Material with Concentrated Mass

  • 摘要: 针对平流层飞艇刚柔一体大型复杂结构系统设计与分析, 开展了附有集中质量的飞艇囊体材料动力特性仿真分析研究, 将刚度大、质量相对集中的结构零部件简化为集中质量, 飞艇囊体简化为双向拉伸的十字形囊体材料试样, 分析预张力大小、集中质量的质量和尺寸对囊体材料试样的动力特性影响. 结果表明, 试样的固有频率随着预张力增大而增大, 随着集中质量的质量增大而减小, 随着集中质量与试样连接的边长增加而增大; 试样的基频与集中质量的高度无关, 但第2, 3阶频率随着集中质量的高度增加而减小. 研究结论为飞艇结构的总体设计与分析以及进一步开展附有集中质量的飞艇囊体材料动力试验提供了理论依据.

     

  • 图  1  三条均匀分布臂缝十字形囊体材料试样

    Figure  1.  Three evenly distributed arm slit cross envelop material sample

    图  2  试样边界条件和施加载荷示例

    Figure  2.  Schematic diagram of sample boundary conditions and loads

    图  3  不同臂缝条数中心区域的等效应力云图

    Figure  3.  Equivalent stress nephogram of the central region with different number of arm slits

    图  4  附有集中质量的十字形试样有限元模型

    Figure  4.  Finite element model of cross sample with concentrated mass

    图  5  十字形试样第$1$~$4$阶振型

    Figure  5.  1st to 4th order modes diagram of cross sample

    图  6  预张力大小对试样固有频率及其增量的影响

    Figure  6.  Effect of pretension on natural frequency and increment of sample

    图  7  集中质量的质量对试样固有频率及其减小量的影响

    Figure  7.  Effect of mass on natural frequency and decrement of sample

    图  8  集中质量的边长对试样固有频率及其增量的影响

    Figure  8.  Effect of side length on natural frequency and increment of sample

    图  9  集中质量的高度对试样固有频率及其减小量的影响

    Figure  9.  Effect of height on natural frequency and decrement of sample

    表  1  不同臂缝条数十字形试样的$q$值

    Table  1.   $q$ values of cross sample with different arm slits

    臂缝条数 0 1 2 3 4 5
    q 0.7772 0.8807 0.9225 0.9430 0.9558 0.9640
    增幅/(%) 13.3 4.7 2.2 1.4 0.9
    下载: 导出CSV
  • [1] QIN P F, WANG X L. Construction on aerodynamic surrogate model of stratospheric airship[J]. Journal of Shanghai Jiaotong University (Science), 2022, 27(6): 768-779 doi: 10.1007/s12204-022-2494-6
    [2] ZUO Z Y, SONG J W, ZHENG Z W, et al. A survey on modelling, control and challenges of stratospheric airships[J]. Control Engineering Practice, 2022, 119(4): 104979
    [3] MA J, WEI Q, FAN H B, et al. Mechanical properties evolution and damage mechanism of kevlar fiber under ozone exposure in near-space simulation[J]. Coatings, 2022, 12(5): 584 doi: 10.3390/coatings12050584
    [4] SHI T B, CHEN W J, GAO C J, et al. Yarn tensile experiments and numerical simulations based on the decomposition of stratospheric airship envelopes[J]. Journal of Aerospace Engineering, 2018, 31(3): 04018011 doi: 10.1061/(ASCE)AS.1943-5525.0000833
    [5] LIU Y, SUN K W, XU Z Y, et al. Energy efficiency assessment of photovoltaic array on the stratospheric airship under partial shading conditions[J]. Applied Energy, 2022, 325(4): 119898
    [6] JIAO J, SONG B F, ZHANG Y G, et al. Optimal design and experiment of propellers for high altitude airship[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232 (10): 1887-1902
    [7] ZHANG H, FUJIKI K, IDO K, et al. Tensile testing of freestanding polymer thin films with non-standard geometries[J]. Polymer Testing, 2020, 91: 106825 doi: 10.1016/j.polymertesting.2020.106825
    [8] LIN X T, WU Y C, CHEN X, et al. Structural evolution and properties of polyamide‐6/ poly (ether block amide) films during the simultaneous biaxial stretching[J]. Journal of Applied Polymer Science, 2022, 139(19): 52152 doi: 10.1002/app.52152
    [9] WANG F X, CHEN Y L, LIU G Z, et al. Investigation of the tearing properties of a new airship envelope fabric based on experimental and theoretical methods[J]. Journal of Industrial Textiles, 2019, 48(8): 1327-1347 doi: 10.1177/1528083718754904
    [10] BAYAZIAN H, YADEGARI A, SCHÖPPNER V. Probing tensile properties of LLDPE stretch films prepared in cast extrusion process[J]. Polymer Bulletin, 2022, 79(3): 1873-1886 doi: 10.1007/s00289-021-03599-9
    [11] WANG F X, CHEN Y L, LIU G Z, et al. Experimental investigation and theoretical analysis of tear propagation of GQ-6 airship envelope[J]. Journal of Industrial Textiles, 2018, 48(1): 304-321 doi: 10.1177/1528083716685906
    [12] 张祎贝, 陈务军, 邓小伟, 等. 薄膜结构空气与低真空环境下模态辨识仿真及试验[J]. 振动与冲击, 2020, 39(20): 168-174,182

    ZHANG Yibei, CHEN Wujun, DENG Xiaowei, et al. Simulation and experiment for membrane modal identification in the air and low vacuum environment[J]. Journal of Vibration and Shock, 2020, 39(20): 168-174,182
    [13] CHEN Y L, YANG W D, XIE W C, et al. Meso-Scale tearing mechanism analysis of flexible fabric composite for stratospheric airship via experiment and numerical simulation[J]. Journal of Shanghai Jiaotong University (Science), 2022, 27(6): 873-884 doi: 10.1007/s12204-022-2431-8
    [14] 陈建稳, 周涵, 陈务军, 等. 飞艇用层压织物膜材料在双向应力作用下的弹性参数分析[J]. 上海交通大学学报, 2017, 51(03): 344-352

    CHEN Jianwen, ZHOU Han, CHEN Wujun, et al. Analysis of elastic parameters for laminated fabrics used in airships under biaxial stresses[J]. Journal of Shanghai Jiao-Tong University, 2017, 51(03): 344-352
    [15] 彭冬冬. 橡胶材料双向拉伸试样有限元分析及其真双轴拉伸试验装置设计[D]. 青岛: 青岛科技大学, 2020

    PENG Dongdong. Finite element analysis of rubber biaxial tensile specimen and design of its true biaxial tensile test device[D]. Qingdao: Qingdao University of Science and Technology, 2020
    [16] 王靖义. 薄膜结构基于附加质量的振动特性分析[D]. 哈尔滨: 哈尔滨工业大学, 2021

    WANG Jingyi. Analysis of vibration characteristics of thin structure based on additional mass[D]. Harbin: Harbin Institute of Technology, 2021
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  302
  • HTML全文浏览量:  127
  • PDF下载量:  39
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-01-12
  • 录用日期:  2024-03-13
  • 修回日期:  2023-03-08
  • 网络出版日期:  2024-01-23

目录

    /

    返回文章
    返回