留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太阳耀斑预报深度学习建模中样本不均衡研究

周俊 佟继周 李云龙 方少峰

周俊, 佟继周, 李云龙, 方少峰. 太阳耀斑预报深度学习建模中样本不均衡研究[J]. 空间科学学报, 2024, 44(2): 241-250. doi: 10.11728/cjss2024.02.2023-0028
引用本文: 周俊, 佟继周, 李云龙, 方少峰. 太阳耀斑预报深度学习建模中样本不均衡研究[J]. 空间科学学报, 2024, 44(2): 241-250. doi: 10.11728/cjss2024.02.2023-0028
ZHOU Jun, TONG Jizhou, LI Yunlong, FANG Shaofeng. Study of Sample Imbalance in Deep Learning Modeling of Solar Flare Forecasting (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 241-250 doi: 10.11728/cjss2024.02.2023-0028
Citation: ZHOU Jun, TONG Jizhou, LI Yunlong, FANG Shaofeng. Study of Sample Imbalance in Deep Learning Modeling of Solar Flare Forecasting (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 241-250 doi: 10.11728/cjss2024.02.2023-0028

太阳耀斑预报深度学习建模中样本不均衡研究

doi: 10.11728/cjss2024.02.2023-0028 cstr: 32142.14.cjss2024.02.2023-0028
基金项目: 国家重点研发计划项目(2022YFF0711400)和中国科学院网信专项(CAS-WX2022SF-0103)共同资助
详细信息
    作者简介:
    • 周俊 男, 1999年6月出生于湖南省岳阳市. 现为中国科学院国家空间科学中心硕士研究生, 主要研究方向空间大数据处理、基于深度学习的太阳耀斑预报. E-mail: 1034051968@qq.com
    通讯作者:
    • 佟继周 女, 1976年5月出生于北京市. 现为中国科学院国家空间科学中心研究员, 主要研究方向为数据标准, 空间科学数据信息系统研发, 空间科学数据挖掘分析与应用等. E-mail: tongjz@nssc.ac.cn
  • 中图分类号: P354

Study of Sample Imbalance in Deep Learning Modeling of Solar Flare Forecasting

  • 摘要: 不同等级耀斑发生的频次存在数量级上的差别, 使基于常规卷积神经网络的耀斑预报模型通常难以捕捉M和X类耀斑先兆特征, 导致高等级耀斑预报精度低的问题. 本文对于这种耀斑预报中的长尾分布问题, 通过控制变量法讨论不同深度长尾学习方法对于耀斑预报精度提升. 尝试从训练集优化、损失函数优化、网络权重优化等角度改进模型对于M和X类耀斑的预报性能. 在SDO/HMI太阳磁图预报未来24 h耀斑的实验中, 相比于常规方法训练的基准模型, 改进模型在M和X类耀斑预报的精确率分别有了53.10%和38.50%的提升, 同时在召回率上有64%和52%的提升. 表明在耀斑预报问题中, 数据长尾分布的处理至关重要, 验证了深度长尾学习方法的有效性. 这种提升尾部类预报精确率的方法不仅可以应用于耀斑预报领域, 还可以迁移到其他具有长尾分布现象的空间天气典型事件的预报分析中.

     

  • 图  1  实验流程(虚线框标出的是对建模过程的修改部分)

    Figure  1.  Experimental flow chart (Dashed box marks the part of the modeling process that has been modified)

    表  1  类重平衡算法

    Table  1.   Class rebalancing algorithm

    算法名称 简称 核心公式
    实例采样(标准数据集) Uniform $ {\tilde {n}}_{j}=N \dfrac{{n}_{j}^{q}}{{\displaystyle\sum }_{i=1}^{C}{n}_{i}^{q}},\; q=0,0.5, 1 $
    类平衡采样 Balance
    平方根采样 Squreroot
    渐进式采样 Shift $ {\tilde {n}}_{j}=N \left[\left(1-\dfrac{t}{T}\right){p}_{j}^{\mathrm{I}\mathrm{B}}+\dfrac{t}{T}{p}_{j}^{\mathrm{C}\mathrm{B}}\right] $
    下载: 导出CSV

    表  2  数据增强算法

    Table  2.   Data enhancement algorithms

    算法名称 简称 核心公式
    RSG算法 RSG
    Mixup算法 Mixup $ \tilde {X}=\lambda {X}_{i}+(1-\lambda ) {X}_{j},\;\tilde {Y}=\lambda {Y}_{i}+(1-\lambda ) {Y}_{j} $
    Manifold Mixup算法 Manifold $ \tilde {X}=\lambda {X}_{i}+(1-\lambda ) {X}_{j},\;\tilde {Y}=\lambda {Y}_{i}+(1-\lambda ) {Y}_{j} $
    下载: 导出CSV

    表  3  损失函数优化算法

    Table  3.   Loss function optimization algorithms

    算法名称 简称 核心公式
    代价敏感学习方法 IB Loss $ {L}_{\mathrm{I}\mathrm{B}}\left(w\right)=\dfrac{1}{m}\displaystyle\sum _{(x,y)\in {D}_{m}}{\lambda }_{k}\dfrac{L(y,f(x,w\left)\right)}{{\|f\left(x,w\right)-y\|}_{1}\cdot {\|h\|}_{1}} $
    LDAM算法 LDAM Loss $ {L}_{\mathrm{L}\mathrm{D}\mathrm{A}\mathrm{M}}\left(y,z\right)=-\mathrm{ln}\dfrac{{e}^{{z}_{y}-{{\varDelta }}_{y}}}{{e}^{{z}_{y}-{{\Delta }}_{y}}+{\displaystyle\sum }_{j\ne y}{e}^{{z}_{j}}} $
    下载: 导出CSV

    表  4  权重优化算法统计

    Table  4.   Weight optimization algorithm statistics table

    算法名称简称核心公式
    类重训练方法CRT
    最近邻分类器方法NCM
    $ \tau $正则化算法$ \tau $$ {\tilde {w}}_{i}=\dfrac{{w}_{i}}{{\|{w}_{i}\|}^{\tau }} $
    可学习权重缩放算法LWS$ {\tilde {w}}_{i}={f}_{i}\cdot {w}_{i} $
    下载: 导出CSV

    表  5  太阳耀斑软X射线等级划分

    Table  5.   Solar flare soft X-ray class classification

    太阳耀斑等级 软X射线峰值流量范围/(W·m–2)
    A $ < {10}^{-7} $
    B $ {10}^{-7}\sim{10}^{-6} $
    C $ {10}^{-6}\sim{10}^{-5} $
    M $ {10}^{-5}\sim{10}^{-4} $
    X $ > {10}^{-4} $
    下载: 导出CSV

    表  6  太阳耀斑预报训练、测试、验证数据集

    Table  6.   Solar flare forecast training, testing and validation dataset

    数据集类型No-flareC-ClassM-ClassX-Class
    训练集22766184782422290
    验证集7532600379592
    测试集7493598878689
    下载: 导出CSV

    表  7  不同重采样方法下耀斑预报模型的精确率

    Table  7.   Precision of flare forecasting models under different resampling methods

    Method No-flare/(%) C-Class/(%) M-Class/(%) X-Class/(%)
    实例采样(基准) 87.10 83.50 0.00 0.00
    类平衡采样 42.20 66.70 7.70 0.00
    平方根采样 54.40 70.70 8.50 5.70
    渐进式采样 58.20 64.40 18.20 15.30
    下载: 导出CSV

    表  8  不同数据增强方法下耀斑预报模型的精确率

    Table  8.   Precision of flare forecasting models with different data enhancement methods

    Method No-flare/(%) C-Class/(%) M-Class/(%) X-Class/(%)
    实例采样(基准) 87.10 83.50 0.00 0.00
    RSG算法 54.80 48.20 0.00 0.00
    Mixup 76.20 58.10 0.00 0.00
    Manifold 42.30 22.90 26.70 17.60
    下载: 导出CSV

    表  9  不同损失函数优化方法下耀斑预报模型的精确率

    Table  9.   Precision of flare forecasting models with different loss function optimization methods

    Method No-flare/(%) C-Class/(%) M-Class/(%) X-Class/(%)
    实例采样(基准) 87.10 83.50 0.00 0.00
    代价敏感学习 57.90 42.10 15.50 4.30
    LDAM算法 63.60 43.10 18.30 15.10
    下载: 导出CSV

    表  10  不同网络权重优化方法下耀斑预报模型的精确率

    Table  10.   Precision of flare forecasting models with different network weight optimization methods

    Method No-flare/(%) C-Class/(%) M-Class/(%) X-Class/(%)
    实例采样(基准) 87.10 83.50 0.00 0.00
    分类器重训练算法 73.50 78.40 28.40 0.00
    最近邻分类器算法 65.70 71.30 30.10 0.00
    τ正则化算法 43.50 51.80 28.10 0.00
    可学习权重缩放算法 63.10 73.10 26.30 0.00
    下载: 导出CSV

    表  11  不同组合训练方法下耀斑预报模型的精确率

    Table  11.   Precision of flare forecasting models with different combinations of training methods

    Method No-flare/(%) C-Class/(%) M-Class/(%) X-Class/(%)
    实例采样(基准) 87.10 83.50 0.00 0.00
    组合训练 Uniform+CRT 73.50 78.40 28.40 0.00
    Uniform+NCM 65.70 71.30 30.10 0.00
    Uniform+$ \tau $ 43.50 51.80 28.10 0.00
    Uniform+LWS 63.10 73.10 26.30 0.00
    Balance+CRT 78.10 77.50 38.80 0.00
    Balance+NCM 73.20 75.80 56.50 0.00
    Balance+$ \tau $ 75.30 78.20 33.10 0.00
    Balance+LWS 81.20 79.60 35.10 0.00
    Squareroot+CRT 42.80 71.50 50.20 2.50
    Squareroot+NCM 72.50 75.90 65.20 28.50
    Squareroot+$ \tau $ 39.20 44.50 36.80 13.50
    Squareroot+LWS 73.80 75.20 30.80 15.60
    Shift+CRT 58.40 78.50 23.10 17.30
    Shift+NCM 78.20 56.80 35.90 18.30
    Shift+$ \tau $ 58.10 38.50 33.70 16.50
    Shift+LWS 73.50 78.10 53.10 38.50
    下载: 导出CSV

    表  12  几种表现较优方法召回率

    Table  12.   Recall rates for several better performing methods

    MethodNo-flare/(%)C-Class/(%)M-Class/(%)X-Class/(%)
    实例采样(基准)837500
    Balance+LWS7771460
    Squareroot+NCM72737538
    Shift+LWS76696452
    下载: 导出CSV

    表  13  去除阴影效应后太阳耀斑预报训练、测试、验证数据集

    Table  13.   Training, testing and validation datasets for solar flare forecasting after removal of shadow effects

    数据集类型No-flareC-ClassM-ClassX-Class
    训练集16218147352059199
    验证集6518498471992
    测试集5676486168372
    下载: 导出CSV

    表  14  几种表现较优方法在去投影数据集上的精确率统计

    Table  14.   Precision statistics of several better-performing methods on the deprojected dataset

    MethodNo-flare/(%)C-Class/(%)M-Class/(%)X-Class/(%)
    实例采样(基准)58.648.116.70
    Balance+LWS68.664.482.411.7
    Squareroot+NCM77.877.375.928
    Shift+LWS82.890.296.734.3
    下载: 导出CSV

    表  15  几种表现较优方法在去投影数据集上的召回率统计

    Table  15.   Recall statistics of several better-performing methods on the deprojected dataset

    MethodNo-flare/(%)C-Class/(%)M-Class/(%)X-Class/(%)
    实例采样(基准)70.743.70.70
    Balance+LWS79.458.617.126.4
    Squareroot+NCM83.87065.373.6
    Shift+LWS95.477.364.363.9
    下载: 导出CSV
  • [1] BLOOMFIELD D S, HIGGINS P A, MCATEER R T J, et al. Toward reliable benchmarking of solar flare forecasting methods[J]. The Astrophysical Journal Letters, 2012, 747(2): L41 doi: 10.1088/2041-8205/747/2/L41
    [2] YUAN Y, SHIH F Y, JING J, et al. Automated flare forecasting using a statistical learning technique[J]. Research in Astronomy and Astrophysics, 2010, 10(8): 785-796 doi: 10.1088/1674-4527/10/8/008
    [3] QAHWAJI R, COLAK T. Automatic short-term solar flare prediction using machine learning and sunspot associations[J]. Solar Physics, 2007, 241(1): 195-211 doi: 10.1007/s11207-006-0272-5
    [4] YU D R, HUANG X, WANG H N, et al. Short-term solar flare level prediction using a Bayesian network approach[J]. The Astrophysical Journal, 2010, 710(1): 869-877 doi: 10.1088/0004-637X/710/1/869
    [5] HAZRA S, SARDAR G, CHOWDHURY P. Distinguishing between flaring and nonflaring active regions[J]. Astronomy & Astrophysics, 2020, 639: A44
    [6] COLAK T, QAHWAJI R. Automated Solar Activity Prediction: A hybrid computer platform using machine learning and solar imaging for automated prediction of solar flares[J]. Space Weather, 2009, 7(6): S06001
    [7] PARK E, MOON Y J, SHIN S, et al. Application of the deep convolutional neural network to the forecast of solar flare occurrence using full-disk solar magnetograms[J]. The Astrophysical Journal, 2018, 869(2): 91 doi: 10.3847/1538-4357/aaed40
    [8] 何欣燃, 钟秋珍, 崔延美, 等. 基于长短期记忆神经网络的太阳耀斑短期预报[J]. 空间科学学报, 2022, 42(5): 862-872 doi: 10.11728/cjss2022.05.210315028

    HE Xinran, ZHONG Qiuzhen, CUI Yanmei, et al. Solar flare short-term forecast model based on long and short-term memory neural network[J]. Chinese Journal of Space Science, 2022, 42(5): 862-872 doi: 10.11728/cjss2022.05.210315028
    [9] 郭大蕾, 张振, 朱凌锋, 等. 太阳活动区EUV图像的生成式模型耀斑分级与预报[J]. 空间科学学报, 2023, 43(1): 60-67. DOI: 10.11728/cjss2023.01.220214015

    GUO Dalei, ZHANG Zhen, ZHU Lingfeng, et al. Generative model-based of flare hierarchic recognition and forecast of extreme ultraviolet images in solar active region[J]. Chinese Journal of Space Science, 2023, 43(1): 60-67. DOI: 10.11728/cjss2023.01.220214015
    [10] HUANG X, WANG H, XU L, et al. Deep learning based solar flare forecasting model. I. results for line-of-sight magnetograms[J]. The Astrophysical Journal, 2018, 856(1): 7 doi: 10.3847/1538-4357/aaae00
    [11] ZHENG Y F, LI X B, WANG X S. Solar flare prediction with the hybrid deep convolutional neural network[J]. The Astrophysical Journal, 2019, 885(1): 73 doi: 10.3847/1538-4357/ab46bd
    [12] LI X B, ZHENG Y F, WANG X S, et al. Predicting solar flares using a novel deep convolutional neural network[J]. The Astrophysical Journal, 2020, 891(1): 10 doi: 10.3847/1538-4357/ab6d04
    [13] WAN J, FU J F, LIU J F, et al. Class imbalance problem in short-term solar flare prediction[J]. Research in Astronomy and Astrophysics, 2021, 21(9): 237 doi: 10.1088/1674-4527/21/9/237
    [14] DENG Z, WANG F, DENG H, et al. Fine-grained solar flare forecasting based on the hybrid convolutional neural networks[J]. The Astrophysical Journal, 2021, 922(2): 232 doi: 10.3847/1538-4357/ac2b2b
    [15] DESHMUKH V, FLYER N, VAN DER SANDE K, et al. Decreasing false-alarm rates in CNN-based solar flare prediction using SDO/HMI data[J]. The Astrophysical Journal Supplement Series, 2022, 260(1): 9 doi: 10.3847/1538-4365/ac5b0c
    [16] KANEDA K, WADA Y, IIDA T, et al. Flare transformer: solar flare prediction using magnetograms and sunspot physical features[C]//Proceedings of the 16th Asian Conference on Computer Vision. Macao, China: Springer, 2022: 1488-1503
    [17] WANG Ting. Statistical Analysis of Solar Flares During 22, 23 and 24 Solar Cycles[D]. Beijing: North China Electric Power University, 2021
    [18] KANG B Y, XIE S N, ROHRBACH M, et al. Decoupling representation and classifier for long-tailed recognition[C]//8th International Conference on Learning Representations. Addis Ababa, Ethiopia: OpenReview. net, 2020
    [19] WANG J F, LUKASIEWICZ T, HU X L, et al. RSG: a simple but effective module for learning imbalanced datasets[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Nashville, TN, USA: IEEE, 2021: 3783-3792
    [20] ZHANG H Y, CISSE M, DAUPHIN Y N, et al. mixup: Beyond empirical risk minimization[C]//6th International Conference on Learning Representations. Vancouver, BC, Canada: OpenReview. net, 2018: 1-13
    [21] VERMA V, LAMB A, BECKHAM C, et al. Manifold mixup: Better representations by interpolating hidden states[C]//Proceedings of the 36th International Conference on Machine Learning. Long Beach: PMLR, 2019: 6438-6447
    [22] PARK S, LIM J, JEON Y, et al. Influence-balanced loss for imbalanced visual classification[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Montreal, QC, Canada: IEEE, 2021: 715-724
    [23] CAO K D, WEI C, GAIDON A, et al. Learning imbalanced datasets with label-distribution-aware margin loss[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems. Red Hook, NY, USA: Curran Associates Inc., 2019: 140
  • 加载中
图(1) / 表(15)
计量
  • 文章访问数:  554
  • HTML全文浏览量:  137
  • PDF下载量:  75
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-02-17
  • 修回日期:  2023-03-26
  • 网络出版日期:  2023-11-13

目录

    /

    返回文章
    返回