留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

火星沉降H-ENA的分布与特性

张艺腾 李磊 谢良海 苟晓晨 冯永勇

张艺腾, 李磊, 谢良海, 苟晓晨, 冯永勇. 火星沉降H-ENA的分布与特性[J]. 空间科学学报, 2024, 44(2): 299-308. doi: 10.11728/cjss2024.02.2023-0044
引用本文: 张艺腾, 李磊, 谢良海, 苟晓晨, 冯永勇. 火星沉降H-ENA的分布与特性[J]. 空间科学学报, 2024, 44(2): 299-308. doi: 10.11728/cjss2024.02.2023-0044
ZHANG Yiteng, LI Lei, XIE Lianghai, GOU Xiaochen, FENG Yongyong. Distribution and Characteristics of Martian Precipitating H-ENA (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 299-308 doi: 10.11728/cjss2024.02.2023-0044
Citation: ZHANG Yiteng, LI Lei, XIE Lianghai, GOU Xiaochen, FENG Yongyong. Distribution and Characteristics of Martian Precipitating H-ENA (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 299-308 doi: 10.11728/cjss2024.02.2023-0044

火星沉降H-ENA的分布与特性

doi: 10.11728/cjss2024.02.2023-0044 cstr: 32142.14.cjss2024.02.2023-0044
基金项目: 国家自然科学基金项目(42241112, 42122032), 中国科学院重点部署项目(ZDBS-SSW-TLC00103), 民用航天预先研究项目(D020104), 国家重点实验室专项研究基金和中国科学院国家空间科学中心“攀登计划”项目共同资助
详细信息
    作者简介:
    • 张艺腾:男, 1981年11月出生于辽宁省沈阳市. 现为中国科学院国家空间科学中心副研究员, 硕士生导师. 主要研究方向为火星空间环境、高精度磁场探测与应用等. E-mail: ytzhang@nssc.ac.cn
    • 李磊:女, 中国科学院国家空间科学中心研究员. 主要从事行星空间环境探测研究. E-mail: lil@nssc.ac.cn
  • 中图分类号: P353

Distribution and Characteristics of Martian Precipitating H-ENA

  • 摘要: 能量中性原子(Energetic Neutral Atom, ENA)是由能量离子与中性背景成分电荷交换产生. 火星的外逸层扩展范围远高于弓激波, 上游太阳风质子与其相互作用并转化为太阳风氢ENA(Hydrogen-ENA, H-ENA), 新生的H-ENA可直接进入低层大气, 成为新的物质与能量输运通道. 本文基于单流体多成分MHD模型与中性外逸层模型, 计算了火星200 km等高面沉降H-ENA通量的空间分布, 统计了多种太阳风条件下沉降H-ENA的粒子与能量沉降率, 分析影响因素. 结果表明, 在一定模拟条件下, 产生于弓激波上游的太阳风H-ENA, 呈cosZ分布(Z为天顶角), 受磁异常影响较小, 是沉降H-ENA的主要成分, 占ENA总沉降量的59%, 占能量沉降的81%; 产生于磁鞘的磁鞘H-ENA受磁异常阻碍影响较大, 在最强磁异常上方其沉降通量显著下降; 沉降H-ENA与上游太阳风的通量呈正比例关系; 2.1%~3.5%上游太阳风质子转化为太阳风H-ENA.

     

  • 图  1  MHD模型的仿真结果. 在MSO (Mars Solar Orbital) 坐标系xz平面内各物理量的空间分布

    Figure  1.  Simulation result of MHD model. Spatial distribution of physical quantities on the xz plane in the MSO (Mars Solar Orbital) frame

    图  2  质子与 H原子、H2分子、O原子的电荷交换截面曲线

    Figure  2.  Cross-section of charge exchange between proton and atomic H, H2 and atomic O

    图  3  H-ENA产生率的全球分布

    Figure  3.  Global distribution of H-ENA production rate

    图  4  200 km等高面上沉降太阳风H-ENA通量的空间分布. (a)沉降太阳风H-ENA通量的经纬度分布, (0, 0)表示日下点. (b)沉降太阳风H-ENA通量随太阳天顶角(Z)的变化

    Figure  4.  Spatial distribution of solar wind H-ENA flux at 200 km. (a) Longitude and latitude distribution of the precipitating solar wind H-ENA flux, and (0, 0) represents the subsolar point. (b) Variation of the precipitating solar wind H-ENA flux with the solar zenith angle (Z)

    图  5  200 km等高面上沉降磁鞘H-ENA通量的空间分布

    Figure  5.  Spatial distribution of precipitating magnetosheath H-ENA flux at 200 km

    图  6  200 km等高面上沉降H-ENA通量随太阳天顶角Z的变化(方向角为该位置与日下点连接弧线相对于日下点地理北向的方向角)

    Figure  6.  Variation of precipitating H-ENA flux on 200 km constant elevation surface with solar zenith angle Z (Direction angle is from the connection arc between the precipitating position and subsolar point to the geography north of the subsolar point)

    图  7  太阳风通量与沉降H-ENA通量以及沉降率的关系

    Figure  7.  Relation between solar wind flux and the precipitating H-ENA flux, particle deposition rate

    图  8  模拟H-ENA定向微分通量图像. 模拟观测位置为MSO坐标系下(–1.5, 2.6, 0), 视场为指向火星的半空间2π视场

    Figure  8.  Image of simulated H-ENA directional differential flux. Virtual observation position is (–1.5, 2.6, 0) in MSO frame, the field of view is 2π in half space field facing to Mars

    表  1  MHD模型的参数

    Table  1.   Parameters of MHD model

    太阳风参数
    密度/cm–31.8
    速度/(km·s–1)(500, 0, 0)
    质子温度/K1.5×105
    磁场/nT(–1.6, 2.5, 0)
    下载: 导出CSV

    表  2  临界高度170 km处外逸层模型参数

    Table  2.   Model parameters at exospheric critical altitude 170 km

    成分温度/K密度/cm–3
    H1929.9×105
    H21923.8×106
    O(thermal)1731.4×108
    O(hot)4.4×1035.5×103
    下载: 导出CSV

    表  3  不同磁异常条件下沉降H-ENA物理量统计

    Table  3.   Statistics on precipitating H-ENA parameters under different crustal field conditions

    模型条件
    (最强磁异常)
    沉降太阳风 H-ENA 沉降磁鞘 H-ENA
    最大通量(×1010)/(m–2·s–1) 沉降率
    (×1024)/ s–1
    能量沉降率(×1027)/(eV·s–1) 最大通量(×1010)/(m–2·s–1) 沉降率
    (×1024)/ s–1
    能量沉降率
    (×1027) /(eV·s–1)
    Case 1 无 2.11 0.84 1.06 1.89 0.83 0.57
    Case 2 位于子夜 2.06 0.80 1.01 1.59 0.70 0.47
    Case 3 位于正午 1.87 0.72 0.91 1.33 0.50 0.21
    下载: 导出CSV

    表  4  不同太阳风条件下沉降H-ENA物理量统计

    Table  4.   Statistics on precipitating H-ENA parameters under different solar wind conditions

    模型说明太阳风沉降太阳风 H-ENA沉降磁鞘 H-ENA
    通量
    (×1012)/( m–2·s–1)
    最大通量

    (×1010 )/(m–2·s–1)
    沉降率
    (×1024)/ s–1
    最大通量

    (×1010)/(m–2·s–1)
    沉降率
    (×1024)/s–1
    表3中Case 30.901.870.721.330.50
    CME到达前2.719.033.596.932.47
    CME到达后10.9438.3614.9628.8011.60
    下载: 导出CSV
  • [1] GRUNTMAN M. Energetic neutral atom imaging of space plasmas[J]. Review of Scientific Instruments, 1997, 68(10): 3617-3656 doi: 10.1063/1.1148389
    [2] WURZ P. Detection of energetic neutral atoms[M]//The Outer Heliosphere: Beyond the Planets. Germany, 2000: 251-288
    [3] 郭志忠, 符慧山, 刘杨洋. 火星空间环境中电子通量的统计研究[J]. 地球与行星物理论评, 2022, 53(4): 488-496 doi: 10.19975/j.dqyxx.2022-004

    GUO Zhizhong, FU Huishan, LIU Yangyang. Statistical study of electron flux in Martian space environment[J]. Reviews of Geophysics and Planetary Physics, 2022, 53(4): 488-496 doi: 10.19975/j.dqyxx.2022-004
    [4] VIGNES D, MAZELLE C, RME H, et al. The solar wind interaction with Mars: locations and shapes of the bow shock and the magnetic pile-up boundary from the observations of the MAG/ER Experiment onboard Mars Global Surveyor[J]. Geophysical Research Letters, 2000, 27(1): 49-52 doi: 10.1029/1999gl010703
    [5] DEIGHAN J, JAIN S K, CHAFFIN M S, et al. Discovery of a proton aurora at Mars[J]. Nature Astronomy, 2018, 2(10): 802-807 doi: 10.1038/s41550-018-0538-5
    [6] RITTER B, GÉRARD J C, HUBERT B, et al. Observations of the proton aurora on Mars with SPICAM on board Mars express[J]. Geophysical Research Letters, 2018, 45(2): 612-619 doi: 10.1002/2017gl076235
    [7] HALEKAS J S. Seasonal variability of the hydrogen exosphere of Mars[J]. Journal of Geophysical Research: Planets, 2017, 122(5): 901-911 doi: 10.1002/2017JE005306
    [8] KALLIO E, LUHMANN J G, BARABASH S. Charge exchange near Mars: The solar wind absorption and energetic neutral atom production[J]. Journal of Geophysical Research: Space Physics, 1997, 102(A10): 22183-22197 doi: 10.1029/97ja01662
    [9] WANG X D, ALHO M, JARVINEN R, et al. Precipitation of hydrogen energetic neutral atoms at the upper atmosphere of Mars[J]. Journal of Geophysical Research: Space Physics, 2018, 123(10): 8730-8748 doi: 10.1029/2018ja025188
    [10] BARABASH S, LUNDIN R, ZARNOWIECKI T, et al. Diagnostic of energetic neutral particles at Mars by the ASPERA-C instrument for the Mars 96 mission[J]. Advances in Space Research, 1995, 16(4): 81-86 doi: 10.1016/0273-1177(95)00212-w
    [11] FUTAANA Y, BARABASH S, GRIGORIEV A, et al. First ENA observations at Mars: ENA emissions from the martian upper atmosphere[J]. Icarus, 2006, 182(2): 424-430 doi: 10.1016/j.icarus.2005.09.019
    [12] FUTAANA Y, BARABASH S, GRIGORIEV A, et al. First ENA observations at Mars: Subsolar ENA jet[J]. Icarus, 2006, 182(2): 413-423 doi: 10.1016/j.icarus.2005.08.024
    [13] GUNELL H, BRINKFELDT K, HOLMSTRÖM M, et al. First ENA observations at Mars: Charge exchange ENAs produced in the magnetosheath[J]. Icarus, 2006, 182(2): 431-438 doi: 10.1016/j.icarus.2005.10.027
    [14] GALLI A, WURZ P, BARABASH S, et al. Energetic hydrogen and oxygen atoms observed on the nightside of Mars[J]. Space Science Reviews, 2006, 126(1): 267-297 doi: 10.1007/s11214-006-9088-8
    [15] GALLI A, WURZ P, KALLIO E, et al. Tailward flow of energetic neutral atoms observed at Mars[J]. Journal of Geophysical Research: Planets, 2008, 113(E12): E12012 doi: 10.1029/2008je003139
    [16] WANG X D, BARABASH S, FUTAANA Y, et al. Directionality and variability of energetic neutral hydrogen fluxes observed by Mars Express[J]. Journal of Geophysical Research: Space Physics, 2013, 118(12): 7635-7642 doi: 10.1002/2013JA018876
    [17] MA J J, LI W Y, KONG L G, et al. Solar wind energetic neutral atom observation at Mars by MINPA onboard the Tianwen-1 orbiter[C]//Proceedings of the Fall Meeting 2022. Chicago, American: AGU
    [18] ZHANG Y T, LI L, XIE L H, et al. Inversion of upstream solar wind parameters from ENA observations at Mars[J]. Remote Sensing, 2023, 15(7): 1721 doi: 10.3390/rs15071721
    [19] RAMSTAD R, BRAIN D A, DONG Y X, et al. Energetic neutral atoms near Mars: Predicted distributions based on MAVEN measurements[J]. The Astrophysical Journal, 2022, 927(1): 11 doi: 10.3847/1538-4357/ac4606
    [20] MA Y J, NAGY A F, SOKOLOV I V, et al. Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars[J]. Journal of Geophysical Research: Space Physics, 2004, 109(A7): A07211 doi: 10.1029/2003ja010367
    [21] MA Y J, RUSSELL C T, FANG X, et al. MHD model results of solar wind interaction with Mars and comparison with MAVEN plasma observations[J]. Geophysical Research Letters, 2015, 42(21): 9113-9120 doi: 10.1002/2015GL065218
    [22] CHAMBERLAIN J W, HUNTEN D M. Theory of Planetary Atmospheres[M] Orlando FL: Academic Press, 1987
    [23] RINSUKE I, TATSUO T, TOSHIZO S, et al. Analytic cross sections for collision of H, H2, He and Li atoms and ions with atoms and melecules; 1993
    [24] LINDSAY B G, STEBBINGS R F. Charge transfer cross sections for energetic neutral atom data analysis[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A12): A12213 doi: 10.1029/2005ja011298
    [25] SWACZYNA P, MCCOMAS D J, ZIRNSTEIN E J, et al. Angular scattering in charge exchange: Issues and implications for secondary interstellar hydrogen[J]. The Astrophysical Journal, 2019, 887(2): 223 doi: 10.3847/1538-4357/ab5440
    [26] HAIDER S A, MAHAJAN K K, BOUGHER S W, et al. Observations and modeling of martian auroras[J]. Space Science Reviews, 2022, 218(4): 32 doi: 10.1007/s11214-022-00906-2
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  449
  • HTML全文浏览量:  107
  • PDF下载量:  54
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-04-07
  • 修回日期:  2023-04-20
  • 网络出版日期:  2023-12-15

目录

    /

    返回文章
    返回