System Design of Millimeter Wave Atmospheric Ozone Radiometer
-
摘要: 平流层臭氧浓度对于地球气候变化和生态环境有着重要影响. 具有谱分析能力的高光谱毫米波辐射计是一种用来探测大气痕量气体的被动式微波遥感器, 能够有效探测大气臭氧垂直廓线, 在空间地球科学领域中具有十分重要的应用价值. 本文研制了一种探测平流层大气臭氧吸收谱线的新型高光谱毫米波臭氧辐射计系统, 该系统结构包括射频接收机和数字后端谱分析仪. 射频接收机部分采用超外差结构获取142.175 GHz±100 MHz带宽信号, 数字后端谱分析部分采用高性能模数转换器对输入模拟信号进行5×108 sample·s–1采样, 14 bit量化, 输入信号3 dB带宽200 MHz, 通过高性能现场可编程门阵列(FPGA)获取信号功率谱, 实现了探测通道数16384, 谱分辨率12.2 kHz. 根据辐射计系统关键模块的设计方案、器件选型和测试方法, 开展大气探测实验, 并将实验结果与大气辐射传输模拟软件(ARTS)仿真结果进行对比, 得出系统灵敏度及各项指标可以满足大气臭氧反演需求, 验证了系统设计的正确性, 满足平流层臭氧浓度监测、预警及其导致的气候变化研究的应用需求.Abstract: Stratospheric ozone concentration has an important impact on global climate change and ecological environment. Hyperspectral millimeter wave radiometer with spectral analysis capability is a passive microwave remote sensor used to detect atmospheric trace gases. It can effectively detect the vertical profile of atmospheric ozone and has very important application value in the field of space earth science. In this paper, a new hyperspectral millimeter wave ozone radiometer system for detecting stratospheric ozone absorption lines is developed. The system structure includes RF receiver and digital spectrum analyzer. The RF receiver part uses a superheterodyne structure to obtain a 142.175 GHz ± 100 MHz bandwidth signal. The digital spectrum analysis part uses a high-performance analog-to-digital converter to sample the input analog signal at 5×108 sample·s–1. The quantization bit is 14 bit and the 3 dB bandwidth of the input signal is 200 MHz. The signal power spectrum is obtained by high-performance Field Programmable Gate Array (FPGA), and the number of detection channels is 16384, and the spectral resolution reached 12.2 kHz. This paper introduces the design scheme, device selection and test method of the key modules of the radiometer system. It is concluded that the system sensitivity and various indicators can meet the requirements of atmospheric ozone inversion, and the correctness of the system design is verified by conducting atmospheric detection experiments and comparing the experimental results with the simulation results of Atmospheric Radiative Transfer Simulation Software (ARTS). The radiometer system meets the application requirements of stratospheric ozone concentration monitoring, early warning and climate change research.
-
Key words:
- Ozone /
- Millimeter wave radiometer /
- Radio frequency receiver /
- FPGA
-
图 12 测量大气臭氧谱线对应亮温与仿真结果的对比(蓝色曲线为经过两点定标后获得的大气臭氧吸收谱线对应亮温, 红色曲线为相应频段仿真结果)
Figure 12. Brightness temperature corresponding to the measured atmospheric ozone spectral line and the simulation results (The blue curve represents the ozone absorption spectral line corresponding to the brightness temperature obtained after two-point calibration, while the red curve depicts the simulation result of the corresponding frequency band)
表 1 ADC芯片主要参数
Table 1. Main parameters of ADC chip
主要参数 数值 通道数 4 量化位宽 14 bit 输入电压(峰值) 1.8 V 输入饱和功率 >0 dBm 输入阻抗 50 Ω 输入带宽 375±100 MHz 有效量化位数 ≥10 bit 采样率 5×108 sample·s–1 -
[1] LACIS A A, WUEBBLES D J, LOGAN J A. Radiative forcing of climate by changes in the vertical distribution of ozone[J]. Journal of Geophysical Research: Atmospheres, 1990, 95(D7): 9971-9981 doi: 10.1029/JD095iD07p09971 [2] 白开旭. 全球大气臭氧总量变化趋势及其区域气候影响机制研究[D]. 上海: 华东师范大学, 2015BAI Kaixu. Investigations of the Long-Term Variability of Global Total Column Ozone and its Impacts on Regional Climate Change[D]. Shanghai: East China Normal University, 2015 [3] DEL FRATE F, CASADIO S, ZEHNER C. Retrieval of ozone profiles by using GOME measurements and a neural network algorithm[C]//Proceedings of the IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: the Role of Remote Sensing in Managing the Environment. Honolulu: IEEE, 2000: 205-207 [4] 周颖, 黄云彪, 李东玲, 等. 一种改进型非交叉非对称C-T结构近红外微型光谱仪设计[J]. 仪器仪表学报, 2021, 42(5): 25-33ZHOU Ying, HUANG Yunbiao, LI Dongling, et al. Design of the improved micro near spectrometer based on non-cross asymmetric C-T structure[J]. Chinese Journal of Scientific Instrument, 2021, 42(5): 25-33 [5] ULABY F T, MOORE R K, FUNG A K. Microwave Remote Sensing: Active and Passive. Volume I-Microwave Remote Sensing Fundamentals and Radiometry[M]. Norwood, MA: Addison-Wesley Publishing Company, 1981 [6] FERNANDEZ S, MURK A, KÄMPFER N. GROMOS-C, a novel ground-based microwave radiometer for ozone measurement campaigns[J]. Atmospheric Measurement Techniques, 2015, 8(7): 2649-2662 doi: 10.5194/amt-8-2649-2015 [7] HILLIARD L, RACETTE P, BLACKWELL W, et al. Hyperspectral Microwave Atmospheric Sounder (HyMAS) architecture and design accommodations[C]//Proceedings of 2013 IEEE Aerospace Conference. Big Sky: IEEE, 2013: 1-11 [8] XIE Y, CHEN J X, LIU D W, et al. Development and calibration of a K-band ground-based hyperspectral microwave radiometer for water vapor measurements[J]. Progress in Electromagnetics Research, 2013, 140: 415-438 doi: 10.2528/PIER13050704 [9] MULLER S C, MURK A, MONSTEIN C, et al. Intercomparison of digital fast Fourier transform and acoustooptical spectrometers for microwave radiometry of the atmosphere[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7): 2233-2239 doi: 10.1109/TGRS.2009.2013695 [10] JIN J D, YAO Q J, LI S, et al. The terahertz radiometer for APSOS project at Yangbajing observing station[C]//Proceedings of 2018 IEEE MTT-S International Wireless Symposium. Chengdu: IEEE, 2018: 1-4 [11] HAGEN J, MURK A, RÜFENACHT R, et al. WIRA-C: a compact 142-GHz-radiometer for continuous middle-atmospheric wind measurements[J]. Atmospheric Measurement Techniques, 2018, 11(9): 5007-5024 doi: 10.5194/amt-11-5007-2018 [12] 王子懿, 沈三民, 杨峰, 等. 基于FPGA的高速大容量存储与传输系统[J]. 电子测量技术, 2021, 44(13): 150-155WANG Ziyi, SHEN Sanmin, YANG Feng, et al. High speed and large capacity storage and transmission system based on FPGA[J]. Electronic Measurement Technology, 2021, 44(13): 150-155 [13] 栾卉, 赵凯. 微波辐射计接收机两点定标法误差分析及准确性验证[J]. 红外与毫米波学报, 2007, 26(4): 289-292 doi: 10.3321/j.issn:1001-9014.2007.04.011LUAN Hui, ZHAO Kai. Error analysis and accuracy validation of two-point calibration for microwave radiometer receiver[J]. Journal of Infrared and Millimeter Waves, 2007, 26(4): 289-292 doi: 10.3321/j.issn:1001-9014.2007.04.011 [14] 许皓文, 陆浩, 王振占. 高光谱微波辐射计系统中2GHz带宽数字谱仪设计[J]. 电子学报, 2022, 50(6): 1472-1479 doi: 10.12263/DZXB.20201178XU Haowen, LU Hao, WANG Zhenzhan. Design of 2 GHz bandwidth digital spectrometer in hyperspectral microwave radiometer system[J]. Acta Electronica Sinica, 2022, 50(6): 1472-1479 doi: 10.12263/DZXB.20201178 -
-