[1] |
THIÉBLEMONT R, BEKKI S, MARCHAND M, et al. Nighttime mesospheric/lower thermospheric tropical ozone response to the 27-day solar rotational cycle: ENVISAT-GOMOS satellite observations versus HAMMONIA idealized chemistry-climate model simulations[J]. Journal of Geophysical Research: Atmospheres, 2018, 123(16): 8883-8896 doi: 10.1029/2017JD027789
|
[2] |
BARTH C A, RUSCH D W, THOMAS R J, et al. Solar mesosphere explorer: scientific objectives and results[J]. Geophysical Research Letters, 1983, 10(4): 237-240 doi: 10.1029/GL010i004p00237
|
[3] |
AIKIN A C, SMITH H J P. Mesospheric ozone changes associated with 27 day solar ultraviolet flux variations[J]. Geophysical Research Letters, 1986, 13(5): 427-430 doi: 10.1029/GL013i005p00427
|
[4] |
KEATING G M, PITTS M C, BRASSEUR G, et al. Response of middle atmosphere to short-term solar ultraviolet variations: 1. Observations[J]. Journal of Geophysical Research: Atmospheres, 1987, 92(D1): 889-902 doi: 10.1029/JD092iD01p00889
|
[5] |
HOOD L L, HUANG Z, BOUGHER S W. Mesospheric effects of solar ultraviolet variations: Further analysis of SME IR ozone and Nimbus 7 SAMS temperature data[J]. Journal of Geophysical Research: Atmospheres, 1991, 96(D7): 12989-13002 doi: 10.1029/91JD01177
|
[6] |
SHAPIRO A V, ROZANOV E, SHAPIRO A I, et al. Signature of the 27-day solar rotation cycle in mesospheric OH and H2O observed by the Aura Microwave Limb Sounder[J]. Atmospheric Chemistry and Physics, 2012, 12(7): 3181-3188 doi: 10.5194/acp-12-3181-2012
|
[7] |
LEE J N, WU D L. Solar cycle modulation of nighttime ozone near the mesopause as observed by MLS[J]. Earth and Space Science, 2020, 7(4): e2019EA001063 doi: 10.1029/2019EA001063
|
[8] |
GAN Q, DU J, FOMICHEV V I, et al. Temperature responses to the 11 year solar cycle in the mesosphere from the 31 year (1979-2010) extended Canadian Middle Atmosphere Model simulations and a comparison with the 14 year (2002-2015) TIMED/SABER observations[J]. Journal of Geophysical Research: Space Physics, 2017, 122(4): 4801-4818 doi: 10.1002/2016JA023564
|
[9] |
程旋, 肖存英, 胡雄, 等. 基于TIMED/SABER卫星温度数据对大气经验模型的评估[J]. 中国科学: 物理学 力学 天文学, 2018, 48 (10): 104701CHENG Xuan, XIAO Cunying, HU Xiong, et al. Evaluation of atmospheric empirical model based on TIMED/SABER satellite temperature data[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2018, 48 (10): 104701
|
[10] |
操文祥, 张绍东, 易帆, 等. 中间层顶变化的SABER/TIMED卫星观测[J]. 地球物理学报, 2012, 55(8): 2489-2497 doi: 10.6038/j.issn.0001-5733.2012.08.001CAO Wenxiang, ZHANG Shaodong, YI Fan, et al. Variation of the mesopause observed by SABER/TIMED satellite[J]. Chinese Journal of Geophysics, 2012, 55(8): 2489-2497 doi: 10.6038/j.issn.0001-5733.2012.08.001
|
[11] |
徐寄遥, 纪巧, 袁韦, 等. TIMED卫星探测的全球大气温度分布及其与经验模式的比较[J]. 空间科学学报, 2006, 26(3): 177-182 doi: 10.3969/j.issn.0254-6124.2006.03.004XU Jiyao, JI Qiao, YUAN Wei, et al. Comparison between the TIMED observed global temperature distribution and the NRLMSISE-00 empirical atmospheric model[J]. Chinese Journal of Space Science, 2006, 26(3): 177-182 doi: 10.3969/j.issn.0254-6124.2006.03.004
|
[12] |
万凌峰. 夏季北半球平流层臭氧对太阳紫外准11年循环的响应及机制[D]. 南京: 南京信息工程大学, 2016WAN Lingfeng. Response and related mechanism of stratospheric ozone in the summer northern hemisphere to the quasi-11 years ultraviolet cycle of the sun[D]. Nanjing: Nanjing University of Information Science and Technology, 2016
|
[13] |
唐超礼. 高空大气多参数时空分布特性研究[D]. 合肥: 中国科学技术大学, 2018TANG Chaoli. Study on the temporal and spatial distribution characteristics of multiple parameters of high altitude atmosphere[D]. Hefei: University of Science and Technology of China, 2018
|
[14] |
刘毅, 陆春晖, 王永, 等. 利用GOMOS卫星资料研究热带平流层臭氧、二氧化氮和三氧化氮的准两年和半年振荡特征[J]. 科学通报, 2011, 56 (18): 1455-1463LIU Yi, LU Chunhui, WANG Yong, et al. The quasi-biennial and semi-annual oscillation features of tropical O3, NO2, and NO3 revealed by GOMOS satellite observations for 2002-2008[J]. Chinese Science Bulletin, 2011, 56 (18): 1455-1463
|
[15] |
常舒捷. 基于多源资料的中层大气重力波分析及其对臭氧的影响[D]. 长沙: 国防科技大学, 2021CHANG Shujie. Analysis of gravity waves in the middle atmosphere based on multi-source data and its impact on ozone[D]. Changsha: National University of Defense Technology, 2021
|
[16] |
陆春晖. 平流层环流的变化特征及其对ENSO海温异常和太阳周期活动的响应[D]. 北京: 中国科学院大气物理研究所, 2011LU Chunhui. Characteristics of stratospheric circulation and its response to ENSO events and sunspot cycle[D]. Beijing: Institute of Atmospheric Physics, Chinese Academy of Sciences, 2011
|
[17] |
程旋. 临近空间大气建模及其应用研究[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2020CHENG Xuan. Researches on atmospheric modeling and applications in near space[D]. Beijing: National Space Science Center, University of Chinese Academy of Sciences, 2020
|
[18] |
杨文凯, 杨钧烽, 郭文杰, 等. Aura/MLS与TIMED/SABER观测全球重力波特性[J]. 空间科学学报, 2022, 42(5): 919-926 doi: 10.11728/cjss2022.05.210906098YANG Wenkai, YANG Junfeng, GUO Wenjie, et al. Global stratospheric gravity wave characteristics by Aura/MLS and TIMED/SABER observation data[J]. Chinese Journal of Space Science, 2022, 42(5): 919-926 doi: 10.11728/cjss2022.05.210906098
|
[19] |
肖存英. 临近空间大气动力学特性研究[D]. 北京: 中国科学院研究生院(空间科学与应用研究中心), 2009XIAO Cunying. Researches on the dynamics of the atmosphere in the near space[D]. Beijing: Center for Space Science and Applied Research, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 2009
|
[20] |
ROECKNER E, BROKOPF R, ESCH M, et al. Sensitivity of simulated climate to horizontal and vertical resolution in the ECHAM5 atmosphere model[J]. Journal of Climate, 2006, 19(16): 3771-3791 doi: 10.1175/JCLI3824.1
|
[21] |
GIORGETTA M A, MANZINI E, ROECKNER E, et al. Climatology and forcing of the Quasi-Biennial Oscillation in the MAECHAM5 model[J]. Journal of Climate, 2006, 19(16): 3882-3901 doi: 10.1175/JCLI3830.1
|
[22] |
MANZINI E, GIORGETTA M A, ESCH M, et al. The influence of sea surface temperatures on the northern winter stratosphere: ensemble simulations with the MAECHAM5 model[J]. Journal of Climate, 2006, 19(16): 3863-3881 doi: 10.1175/JCLI3826.1
|
[23] |
KINNISON D E, BRASSEUR G P, WALTERS S, et al. Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model[J]. Journal of Geophysical Research: Atmospheres, 2007, 112(D20): D20302
|
[24] |
GRUZDEV A N, SCHMIDT H, BRASSEUR G P. The effect of the solar rotational irradiance variation on the middle and upper atmosphere calculated by a three-dimensional chemistry-climate model[J]. Atmospheric Chemistry and Physics, 2009, 9(2): 595-614 doi: 10.5194/acp-9-595-2009
|
[25] |
SCHMIDT H, BRASSEUR G P, CHARRON M, et al. The HAMMONIA chemistry climate model: sensitivity of the mesopause region to the 11-year solar cycle and CO2 doubling[J]. Journal of Climate, 2006, 19(16): 3903-3931 doi: 10.1175/JCLI3829.1
|
[26] |
HUANG F T, MAYR H G, REBER C A, et al. Ozone quasi-biennial oscillations (QBO), semiannual oscillations (SAO), and correlations with temperature in the mesosphere, lower thermosphere, and stratosphere, based on measurements from SABER on TIMED and MLS on UARS[J]. Journal of Geophysical Research: Space Physics, 2008, 113(A1): A01316
|