留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CFOSAT散射计海面后向散射系数误差及影响

董楹 林文明

董楹, 林文明. CFOSAT散射计海面后向散射系数误差及影响[J]. 空间科学学报, 2024, 44(2): 326-334. doi: 10.11728/cjss2024.02.2023-0144
引用本文: 董楹, 林文明. CFOSAT散射计海面后向散射系数误差及影响[J]. 空间科学学报, 2024, 44(2): 326-334. doi: 10.11728/cjss2024.02.2023-0144
DONG Ying, LIN Wenming. Analysis of Sea Surface Backscatter Coefficient Errors and Its Effects for the CFOSAT Scatterometer (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 326-334 doi: 10.11728/cjss2024.02.2023-0144
Citation: DONG Ying, LIN Wenming. Analysis of Sea Surface Backscatter Coefficient Errors and Its Effects for the CFOSAT Scatterometer (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 326-334 doi: 10.11728/cjss2024.02.2023-0144

CFOSAT散射计海面后向散射系数误差及影响

doi: 10.11728/cjss2024.02.2023-0144 cstr: 32142.14.cjss2024.02.2023-0144
基金项目: 国家重点研发计划项目资助(2022YFC3104900, 2022YFC3104902)
详细信息
    作者简介:
    • 董楹:女, 1999年3月出生于江苏省南通市. 现为南京信息工程大学海洋科学学院研究生, 主要研究方向为海洋微波遥感. E-mail: 20211237012@nuist.edu.cn
    通讯作者:
    • 男, 1984年出生于福建省仙游县. 现为南京信息工程大学海洋科学学院教授, 博士生导师, 研究方向为海洋微波遥感、先进数据处理方法、雷达定标技术以及海面风场遥感及应用. E-mail: wenminglin@nuist.edu.cn
  • 中图分类号: P732

Analysis of Sea Surface Backscatter Coefficient Errors and Its Effects for the CFOSAT Scatterometer

  • 摘要: 仪器噪声(Kpc)和地球物理噪声(Kpg)是影响星载微波散射计后向散射系数(σ0)测量精度以及海面风场反演精度的关键因素. 针对中法海洋卫星(CFOSAT)散射计(CSCAT), 详细分析了KpcKpg随海面风速、入射角、风单元网格分辨率以及离岸距离等因素变化的特征. 结果表明, 低风速条件下海面风场变异性较大, Kpgσ0测量误差的主导因素, 而且风单元网格越大、海面风场的不均匀性越强, Kpg也就越大, 而在高风速条件下, 海面风场变异性较小, KpcKpg贡献相当. 此外, σ0测量误差总体上随着离岸距离的减小而增大, 表明近海岸区域的Kpg为散射计观测不可忽略的影响因子. 研究结果揭示了星载微波散射计σ0测量误差的影响因素, 对CSCAT近海岸风场反演具有重要的指导意义.

     

  • 图  1  信噪比随入射角和风速的变化

    Figure  1.  Expected SNR as a function of wind speed and incidence angle

    图  2  信噪比随σ0的变化

    Figure  2.  Correspondence variation between SNR and CSCAT σ0

    图  3  KpgKpc比值随风速的变化

    Figure  3.  Ratio of Kpg to Kpc varies with wind speed

    图  4  CSCAT 不同空间分辨率KpcKpg随风速的变化

    Figure  4.  Kpc and Kpg vary with wind speed at CSCAT different spatial resolutions

    图  5  CSCAT 25 km分辨率WVC σ0测量误差随入射角和风速的变化

    Figure  5.  WVC σ0 measurement error varies with incidence angle and wind speed at CSCAT 25 km resolution

    图  6  CSCAT σ0测量误差随网格分辨率的变化

    Figure  6.  CSCAT σ0 measurement error varies with grid resolution

    图  7  Kpg随离岸距离的变化

    Figure  7.  Kpg varies with different offshore distances

    图  8  CSCAT 12.5 km分辨率风场数据与ECMWF背景风场数据的标准差(a)和偏差(b)随离岸距离的变化

    Figure  8.  Variation of standard deviation (a) and bias (b) between CSCAT 12.5 km resolution wind field data and ECMWF background wind field data with offshore distance

    图  9  CSCAT于2021年9月12日10:20 UTC观测的台风灿都及近海岸海面风场

    Figure  9.  Typhoon Zandu and near-shore sea surface wind field observed by CSCAT at 10:20 UTC on 12 September 2021

  • [1] SONG Q T, CHELTON D B, ESBENSEN S K, et al. Coupling between sea surface temperature and low-level winds in mesoscale numerical models[J]. Journal of Climate, 2009, 22(1): 146-164 doi: 10.1175/2008JCLI2488.1
    [2] MCGREGOR S, RAMESH N, SPENCE P, et al. Meridional movement of wind anomalies during Enso events and their role in event termination[J]. Geophysical Research Letters, 2013, 40(4): 749-754 doi: 10.1002/grl.50136
    [3] LENTZ S J. The surface boundary layer in coastal upwelling regions[J]. Journal of Physical Oceanography, 1992, 22(12): 1517-1539 doi: 10.1175/1520-0485(1992)022<1517:TSBLIC>2.0.CO;2
    [4] BARALE V, GADE M. Remote Sensing of the Asian Seas[M]. Cham: Springer, 2019: 73075
    [5] FISCHER R E. Standard deviation of scatterometer measurements from space[J]. IEEE Transactions on Geoscience Electronics, 1972, 10(2): 106-113 doi: 10.1109/TGE.1972.271276
    [6] LONG D G, SKOUSON G B. Calibration of spaceborne scatterometers using tropical rain forests[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 413-424 doi: 10.1109/36.485119
    [7] JOHNSON P E, LONG D G, OLIPHANT T E. Geophysical modeling error in wind scatterometry[C]//IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium. Lincoln: IEEE, 1996: 1721-1723
    [8] PORTABELLA M, STOFFELEN A. Scatterometer backscatter uncertainty due to wind variability[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3356-3362 doi: 10.1109/TGRS.2006.877952
    [9] GRIECO G, STOFFELEN A, VERHOEF A, et al. Analysis of data-derived SeaWinds normalized radar cross-section noise[J]. Remote Sensing, 2022, 14(21): 5444 doi: 10.3390/rs14215444
    [10] LIN W M, DONG X L, PORTABELLA M, et al. A perspective on the performance of the CFOSAT rotating fan-beam scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 627-639 doi: 10.1109/TGRS.2018.2858852
    [11] LIU J Q, LIN W M, DONG X L, et al. First results from the rotating fan beam scatterometer onboard CFOSAT[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(12): 8793-8806 doi: 10.1109/TGRS.2020.2990708
    [12] 黄耀辉, 赵晓磊, 阎诚, 等. 中法海洋卫星及典型应用[J]. 卫星应用, 2020(5): 32-37 doi: 10.3969/j.issn.1674-9030.2020.05.011

    HUANG Yaohui, ZHAO Xiaolei, YAN Chen, et al. Typical application of China-France oceanography satellite[J]. Satellite Application, 2020(5): 32-37 doi: 10.3969/j.issn.1674-9030.2020.05.011
    [13] 董晓龙, 朱迪, 林文明, 等. 中法海洋卫星微波散射计在轨性能验证[J]. 空间科学学报, 2020, 40(3): 425-431 doi: 10.11728/cjss2020.03.425

    DONG Xiaolong, ZHU Di, LIN Wenming, et al. Orbit performances validation for CFOSAT scatterometer[J]. Chinese Journal of Space Science, 2020, 40(3): 425-431 doi: 10.11728/cjss2020.03.425
    [14] LIN W M, DONG X L. Design and optimization of a Ku-band rotating, range-gated fanbeam scatterometer[J]. International Journal of Remote Sensing, 2011, 32(8): 2151-2171 doi: 10.1080/01431161003674626
    [15] 林文明. 星载扇形波束扫描微波散射计系统研究[D]. 北京: 中国科学研究生院, 2011

    LIN Wenming. Study on space borne rotating, range-gated, fan beam scatterometer system[D]. Beijing: Graduate Universuty of Chinese Academy of Science, 2011
    [16] SPENCER M W. A methodology for the design of spaceborne Pencil-Beam scatterometer Systems[D]. Prove: Brigham Young University, 2001
    [17] LONG D G, CHI C Y, LI F. The design of an onboard digital doppler processor for a spaceborne scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(6): 869-878 doi: 10.1109/36.7718
  • 加载中
图(9)
计量
  • 文章访问数:  326
  • HTML全文浏览量:  389
  • PDF下载量:  54
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-12-08
  • 修回日期:  2024-01-10
  • 网络出版日期:  2024-01-31

目录

    /

    返回文章
    返回