CFOSAT散射计海面后向散射系数误差及影响
doi: 10.11728/cjss2024.02.2023-0144 cstr: 32142.14.cjss2024.02.2023-0144
Analysis of Sea Surface Backscatter Coefficient Errors and Its Effects for the CFOSAT Scatterometer
-
摘要: 仪器噪声(Kpc)和地球物理噪声(Kpg)是影响星载微波散射计后向散射系数(σ0)测量精度以及海面风场反演精度的关键因素. 针对中法海洋卫星(CFOSAT)散射计(CSCAT), 详细分析了Kpc和Kpg随海面风速、入射角、风单元网格分辨率以及离岸距离等因素变化的特征. 结果表明, 低风速条件下海面风场变异性较大, Kpg为σ0测量误差的主导因素, 而且风单元网格越大、海面风场的不均匀性越强, Kpg也就越大, 而在高风速条件下, 海面风场变异性较小, Kpc与Kpg贡献相当. 此外, σ0测量误差总体上随着离岸距离的减小而增大, 表明近海岸区域的Kpg为散射计观测不可忽略的影响因子. 研究结果揭示了星载微波散射计σ0测量误差的影响因素, 对CSCAT近海岸风场反演具有重要的指导意义.Abstract: Noise is a key factor that affects the accuracy of spaceborne scatterometer backscatter coefficient (σ0), as well as the retrieved sea surface wind quality. In general, the scatterometer σ0 measurement error is attributed to both instrumental noise and geophysical noise, which are expressed in terms of normalized standard deviation (Kp). In this paper, the instrumental noise (Kpc) and the geophysical noise (Kpg) are analyzed as a function of sea surface wind speed, incidence angle, spatial resolution and offshore distance for the China-France Oceanography Satellite Scatterometer. The result shows that the variability of sea surface wind field is large under low wind conditions, so the geophysical noise dominates the measurement error of radar backscatters. Notably, the larger the grid size of Wind Vector Cell (WVC), the more inhomogeneous the sea surface wind, such that the Kpg value increases as the WVC size, but at the same time, the larger the wind cell grid and the larger the number of independent observation samples, the smaller the Kpc. While under high wind conditions, the variability of sea surface wind is small, and the contribution of instrument noise and geophysical noise is similar. Regarding the sensitivity of measurement error to the incidence Angle, Kpc and Kpg show a minimum value at the incidence angle of 40°, which is consistent with the antenna gain pattern. Finally, the relationship between the backscatter measurement error and the offshore distance is studied in order to clarify the feasibility of near shore wind field inversion for the CSCAT. The results show that the observation error generally increases as the offshore distance decreases, indicating that the near-shore geophysical noise is non-negligible for the scatterometer measurements approaching to the coastal line. In summary, the results presented in this paper reveal the influence factors of scatterometer σ0 measurements, which are relevant for better understanding the wind inversion and quality control of CSCAT, notably near the coastal areas.
-
-
[1] SONG Q T, CHELTON D B, ESBENSEN S K, et al. Coupling between sea surface temperature and low-level winds in mesoscale numerical models[J]. Journal of Climate, 2009, 22(1): 146-164 doi: 10.1175/2008JCLI2488.1 [2] MCGREGOR S, RAMESH N, SPENCE P, et al. Meridional movement of wind anomalies during Enso events and their role in event termination[J]. Geophysical Research Letters, 2013, 40(4): 749-754 doi: 10.1002/grl.50136 [3] LENTZ S J. The surface boundary layer in coastal upwelling regions[J]. Journal of Physical Oceanography, 1992, 22(12): 1517-1539 doi: 10.1175/1520-0485(1992)022<1517:TSBLIC>2.0.CO;2 [4] BARALE V, GADE M. Remote Sensing of the Asian Seas[M]. Cham: Springer, 2019: 73075 [5] FISCHER R E. Standard deviation of scatterometer measurements from space[J]. IEEE Transactions on Geoscience Electronics, 1972, 10(2): 106-113 doi: 10.1109/TGE.1972.271276 [6] LONG D G, SKOUSON G B. Calibration of spaceborne scatterometers using tropical rain forests[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996, 34(2): 413-424 doi: 10.1109/36.485119 [7] JOHNSON P E, LONG D G, OLIPHANT T E. Geophysical modeling error in wind scatterometry[C]//IGARSS '96. 1996 International Geoscience and Remote Sensing Symposium. Lincoln: IEEE, 1996: 1721-1723 [8] PORTABELLA M, STOFFELEN A. Scatterometer backscatter uncertainty due to wind variability[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(11): 3356-3362 doi: 10.1109/TGRS.2006.877952 [9] GRIECO G, STOFFELEN A, VERHOEF A, et al. Analysis of data-derived SeaWinds normalized radar cross-section noise[J]. Remote Sensing, 2022, 14(21): 5444 doi: 10.3390/rs14215444 [10] LIN W M, DONG X L, PORTABELLA M, et al. A perspective on the performance of the CFOSAT rotating fan-beam scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(2): 627-639 doi: 10.1109/TGRS.2018.2858852 [11] LIU J Q, LIN W M, DONG X L, et al. First results from the rotating fan beam scatterometer onboard CFOSAT[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(12): 8793-8806 doi: 10.1109/TGRS.2020.2990708 [12] 黄耀辉, 赵晓磊, 阎诚, 等. 中法海洋卫星及典型应用[J]. 卫星应用, 2020(5): 32-37 doi: 10.3969/j.issn.1674-9030.2020.05.011HUANG Yaohui, ZHAO Xiaolei, YAN Chen, et al. Typical application of China-France oceanography satellite[J]. Satellite Application, 2020(5): 32-37 doi: 10.3969/j.issn.1674-9030.2020.05.011 [13] 董晓龙, 朱迪, 林文明, 等. 中法海洋卫星微波散射计在轨性能验证[J]. 空间科学学报, 2020, 40(3): 425-431 doi: 10.11728/cjss2020.03.425DONG Xiaolong, ZHU Di, LIN Wenming, et al. Orbit performances validation for CFOSAT scatterometer[J]. Chinese Journal of Space Science, 2020, 40(3): 425-431 doi: 10.11728/cjss2020.03.425 [14] LIN W M, DONG X L. Design and optimization of a Ku-band rotating, range-gated fanbeam scatterometer[J]. International Journal of Remote Sensing, 2011, 32(8): 2151-2171 doi: 10.1080/01431161003674626 [15] 林文明. 星载扇形波束扫描微波散射计系统研究[D]. 北京: 中国科学研究生院, 2011LIN Wenming. Study on space borne rotating, range-gated, fan beam scatterometer system[D]. Beijing: Graduate Universuty of Chinese Academy of Science, 2011 [16] SPENCER M W. A methodology for the design of spaceborne Pencil-Beam scatterometer Systems[D]. Prove: Brigham Young University, 2001 [17] LONG D G, CHI C Y, LI F. The design of an onboard digital doppler processor for a spaceborne scatterometer[J]. IEEE Transactions on Geoscience and Remote Sensing, 1988, 26(6): 869-878 doi: 10.1109/36.7718 -
-