留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天基分布式光学合成孔径技术

王小勇 张家福 李凌 郭崇岭

王小勇, 张家福, 李凌, 郭崇岭. 天基分布式光学合成孔径技术[J]. 空间科学学报, 2024, 44(2): 356-367. doi: 10.11728/cjss2024.02.yg06
引用本文: 王小勇, 张家福, 李凌, 郭崇岭. 天基分布式光学合成孔径技术[J]. 空间科学学报, 2024, 44(2): 356-367. doi: 10.11728/cjss2024.02.yg06
WANG Xiaoyong, ZHANG Jiafu, LI Ling, GUO Chongling. Space-based Distributed Optical Synthetic Aperture Techniques (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 356-367 doi: 10.11728/cjss2024.02.yg06
Citation: WANG Xiaoyong, ZHANG Jiafu, LI Ling, GUO Chongling. Space-based Distributed Optical Synthetic Aperture Techniques (in Chinese). Chinese Journal of Space Science, 2024, 44(2): 356-367 doi: 10.11728/cjss2024.02.yg06

天基分布式光学合成孔径技术

doi: 10.11728/cjss2024.02.yg06 cstr: 32142.14.cjss2024.02.yg06
详细信息
    作者简介:
    • 王小勇:男, 1972年11月生, 籍贯吉林省长春市. 现为北京空间机电研究所研究员, 博士生导师, 主要研究方向为高分辨率空间光学遥感技术等
  • 中图分类号: P171.3

Space-based Distributed Optical Synthetic Aperture Techniques

  • 摘要: 宜居带行星探测研究是近年系外行星研究的热点领域之一, 探测太阳系附近的宜居行星对研究生命起源等具有重要意义, 成为系外行星探测的重要内容. 天基分布式合成孔径技术作为系外宜居行星探测的重要手段, 已经成为目前前沿光学技术研究的热点方向, 但是仍有诸多技术问题需解决. 本文从宜居行星搜寻计划的需求出发, 根据以迈克尔逊干涉成像为基础的天基分布式合成孔径系统技术原理, 介绍了国内外典型分布式合成孔径系统的技术发展, 重点分析了实现天基分布式干涉成像所需采用的控制系统和技术, 并阐述了解决高精度空间测距、高精度时间同步、多层级位相同步等关键问题的技术要点. 为未来大型柔性可重构空间望远系统的建造提供了参考.

     

  • 图  1  光学合成孔径技术

    Figure  1.  Optical synthetic aperture techniques

    图  2  分布式合成孔径系统工作流程

    Figure  2.  Process of distributed optical synthetic aperture system

    图  3  分布式合成孔径成像原理

    Figure  3.  Principle of distributed synthetic aperture imaging

    图  4  LBTI组件

    Figure  4.  Components of the LBTI

    图  5  Keck单光路路径

    Figure  5.  Keck single optical path diagram

    图  6  SPR, DFPR, AST的体系结构

    Figure  6.  Architectures of SPR, DFPR, AST

    图  7  甚大望远镜干涉仪的组成

    Figure  7.  Constitute of Very Large Telescope Interferometer (VLTI)

    图  8  VLTI的Gravity运行

    Figure  8.  Operation diagram of VLTI Gravity

    图  9  达尔文三台和四台望远镜编队的孔径配置和角度接收特性

    Figure  9.  Aperture configurations and angular receive characteristics for three and four telescope formations

    图  10  DARWIN干涉仪配置

    Figure  10.  DARWIN interferometer configuration

    图  11  FFI的X型阵列

    Figure  11.  X-array of FFI

    图  12  LIFE构想

    Figure  12.  Ideogram of LIFE

    图  13  觅音计划设想

    Figure  13.  Ideogram of MEAYIN mission

    图  14  FIIT试验台整体布局

    Figure  14.  Overall layout of the FIIT testbed

    图  15  双筒望远镜实验平台的光学结构

    Figure  15.  Optical structure of binoculars experimental platform

    图  16  六孔径合成孔径光学探测系统样机

    Figure  16.  Prototype of six-aperture synthetic aperture optical detection system

    图  17  三孔径分布式样机

    Figure  17.  Three aperture distributed prototype

  • [1] 田丰, 胡雄, 吴季. 系外行星大气与宜居系外行星研究进展及发展趋势[J]. 空间科学学报, 2016, 36(6): 815-827 doi: 10.11728/cjss2016.06.815

    TIAN Feng, HU Xiong, WU Ji. Research progress and prospect of exoplanetary atmospheres and habitable exoplanet sciences[J]. Chinese Journal of Space Science, 2016, 36(6): 815-827 doi: 10.11728/cjss2016.06.815
    [2] 王佳琪, 王汇娟, 王炜, 等. 太阳系外行星探测研究进展[J]. 天文学进展, 2021, 39(1): 1-28 doi: 10.3969/j.issn.1000-8349.2021.01.01

    WANG Jiaqi, WANG Huijuan, WANG Wei, et al. The recent progress of detection and research of exoplanets[J]. Progress in Astronomy, 2021, 39(1): 1-28 doi: 10.3969/j.issn.1000-8349.2021.01.01
    [3] 胡永云. 系外行星和系外生命——兼谈2019年度诺贝尔物理学奖[J]. 科学通报, 2019, 64(36): 3798-3807 doi: 10.1360/TB-2019-0720

    HU Yongyun. Searching for exoplanets and exo-life: On the 2019 nobel prize in physics[J]. Chinese Science Bulletin, 2019, 64(36): 3798-3807 doi: 10.1360/TB-2019-0720
    [4] NASA. Exoplanet and Candidate Statistics[EB/OL]. (2023-12-28)[2023-12-28]. https://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html
    [5] BRACEWELL R N. Detecting nonsolar planets by spinning infrared interferometer[J]. Nature, 1978, 274(5673): 780-781 doi: 10.1038/274780a0
    [6] MARTIN S R, KSENDZOV A, LAY O, et al. TPF-Interferometer: a decade of development in exoplanet detection technology[C]//Proceedings of SPIE 8151, Techniques and Instrumentation for Detection of Exoplanets V. San Diego: SPIE, 2011: 81510D
    [7] GABOR P. A Study of the Performance of A Nulling Interferometer Testbed Preparatory to the Darwin Mission[D]. Paris: Universite Paris Sud, 2009
    [8] QUANZ S P, OTTIGER M, FONTANET E, et al. Large Interferometer For Exoplanets (LIFE): I. Improved exoplanet detection yield estimates for a large mid-infrared space-interferometer mission[J]. Astronomy & Astrophysics, 2022, 664: A21
    [9] NASA Headquarters. Kepler Completes Prime Mission, Begins Extended Mission[EB/OL]. (2012-11-15)[2023-12-28]. https://www.astronomy.com/science/kepler-completes-prime-mission-begins-extended-mission/
    [10] KIM S E. What Comes After the James Webb Space Telescope? Some Astronomers Want LIFE[EB/OL]. (2022-06-02)[2023-12-28]. https://www.popsci.com/science/next-james-webb-space-telescope-find-exoplanets/#The%20Origins%20of%20Life
    [11] Kammerer J , Quanz S P . Simulating the Exoplanet Yield of a Space-based MIR Interferometer Based on Kepler Statistics[J]. Earth and Planetary Astrophysics , 2017, 609: A4
    [12] 乔彦峰, 刘坤, 段相永. 光学合成孔径成像技术及发展现状[J]. 中国光学与应用光学, 2009, 2(3): 175-183

    QIAO Yanfeng, LIU Kun, DUAN Xiangyong. Optical synthetic aperture imaging techniques and development[J]. Chinese Journal of Optics and Applied Optics, 2009, 2(3): 175-183
    [13] 周程灏, 王治乐, 朱峰. 大口径光学合成孔径成像技术发展现状[J]. 中国光学, 2017, 10(1): 25-38 doi: 10.3788/co.20171001.0025

    ZHOU Chenghao, WANG Zhile, ZHU Feng. Review on optical synthetic aperture imaging technique[J]. Chinese Optics, 2017, 10(1): 25-38 doi: 10.3788/co.20171001.0025
    [14] GLINDEMANN A, ABUTER R, CARBOGNANI F, et al. The VLT Interferometer: a unique instrument for high-resolution astronomy[C]//Proceedings of SPIE 4006, Interferometry in Optical Astronomy. Munich: SPIE, 2000
    [15] GLINDEMANN A, ALGOMEDO J, AMESTICA R, et al. The VLTI and its subsystems[J]. EAS Publications Series, 2003, 6: 91-91 doi: 10.1051/eas:2003008
    [16] GLINDEMANN A. Introduction to Spatial Interferometry[EB/OL]. (2022)[2022]. https://www.eso.org/sci/facilities/paranal/telescopes/vlti/tuto/tutorial_spatial_interferometry.pdf
    [17] 林燮佳, 吴桢. 光学合成孔径成像技术的uv覆盖与孔径排列研究[J]. 应用光学, 2012, 33(1): 30-36

    LIN Xiejia, WU Zhen. Study on uv coverage of optical synthetic aperture imaging technology and optimization of aperture[J]. Journal of Applied Optics, 2012, 33(1): 30-36
    [18] DEFRÈRE D, HINZ P, SKEMER A, et al. Exoplanet science with the LBTI: instrument status and plans[C]//Proceedings of SPIE 9605, Techniques and Instrumentation for Detection of Exoplanets VII. San Diego: SPIE, 2015: 96051G
    [19] HILL J M, GREEN R F, SLAGLE J H. The large binocular telescope[C]//Proceedings of SPIE 7733, Ground-based and Airborne Telescopes III. San Diego: SPIE, 2006: 77330C
    [20] ERTEL S, HINZ P M, STONE J M, et al. Overview and prospects of the LBTI beyond the completed HOSTS survey[C]//Proceedings of SPIE 11446, Optical and Infrared Interferometry and Imaging VII. Online Only: SPIE, 2020: 1144607
    [21] PATRU F, ESPOSITO S, PUGLISI A, et al. The LBTI Fizeau imager – I. Fundamental gain in high-contrast imaging[J]. Monthly Notices of the Royal Astronomical Society, 2017, 472(3): 2544-2553 doi: 10.1093/mnras/stx1961
    [22] HINZ P M, DEFRÈRE D, SKEMER A, et al. Overview of LBTI: a multipurpose facility for high spatial resolution observations[C]//Proceedings of SPIE 9907, Optical and Infrared Interferometry and Imaging V. Edinburgh: SPIE, 2016: 990704
    [23] COLAVITA M M, WIZINOWICH P L, AKESON R L, et al. The Keck Interferometer[J]. Publications of the Astronomical Society of the Pacific, 2013, 125: 1226-1264 doi: 10.1086/673475
    [24] VASISHT G, BOOTH A J, COLAVITA M M, et al. Performance and verification of the Keck interferometer fringe detection and tracking system[C]//Proceedings of SPIE 4838, Interferometry for Optical Astronomy II. Waikoloa: SPIE, 2003
    [25] WOILLEZ J, AKESON R, COLAVITA M, et al. ASTRA: astrometry and phase-referencing astronomy on the Keck interferometer[C]//Proceedings of SPIE 7734, Optical and Infrared Interferometry II. San Diego: SPIE, 2010
    [26] SCHÖLLER M. The very large telescope interferometer: current facility and prospects[J]. New Astronomy Reviews, 2007, 51(8/9): 628-638
    [27] EISENHAUER F, PERRIN G, STRAUBMEIER C, et al. GRAVITY: microarcsecond astrometry and deep interferometric imaging with the VLTI[C]. Proceedings of the International Astronomical Union, 2007, 3 (S248): 100-101
    [28] ABUTER R, ACCARDO M, AMORIM A, et al. First light for GRAVITY: Phase referencing optical interferometry for the very large telescope interferometer[J]. Astronomy & Astrophysics, 2017, 602: A94
    [29] COCKELL C S, LEGER A, FRIDLUND M, et al. Darwin-a mission to detect and search for life on extrasolar planets[J]. Astrobiology, 2009, 9 (1): 1-22
    [30] WALLNER O, ERGENZINGER K, FLATSCHER R, et al. DARWIN mission and configuration trade-of[C]//Proceedings of SPIE 6268, Advances in Stellar Interferometry. Orlando: SPIE, 2006: 626827
    [31] FRIDLUND M, GONDOIN P. GENIE – the Darwin demonstrator[J]. Astrophysics and Space Science, 2003, 286(1): 93-98
    [32] GONDOIN P, ABSIL O, FRIDLUND C V M, et al. Darwin ground-based European nulling interferometer experiment (GENIE)[C]//Proceedings of SPIE 4838, Interferometry for Optical Astronomy II. Waikoloa: SPIE, 2003: 700-711
    [33] HENRY C, LAY O, AUNG M, et al. Terrestrial planet finder interferometer: architecture, mission design, and technology development[C]//Proceedings of SPIE 5491, New Frontiers in Stellar Interferometry. Glasgow: SPIE, 2004: 265-274
    [34] LAWSON P R, LAY O P, JOHNSTON K J, et al. Terrestrial Planet Finder Interferometer Science Working Group Report[M]. California: Jet Propulsion Laboratory, 2007
    [35] HANSEN J T, IRELAND M J, The LIFE Collaboration. Large Interferometer for Exoplanets (LIFE) IV. Ideal kernel-nulling array architectures for a space-based mid-infrared nulling interferometer[J]. Astronomy & Astrophysics, 2022, 664: A52
    [36] RANGANATHAN M, GLAUSER A M, BIRBACHER T, et al. The nulling interferometer cryogenic experiment: I[C]//Proceedings of SPIE 12183, Optical and Infrared Interferometry and Imaging VIII. Montréal: SPIE, 2022: 121830L
    [37] 仝照远, 李萌, 崔程博, 等. 空间可展开薄膜遮光罩设计与分析[J]. 中国空间科学技术, 2021, 41(3): 82-88

    TONG Zhaoyuan, LI Meng, CUI Chengbo, et al. Design and analysis of the configuration of deployable membrane sunshield[J]. Chinese Space Science and Technology, 2021, 41(3): 82-88
    [38] JIANG A M, WANG S, DONG Z C, et al. Wide-band white light sparse-aperture Fizeau imaging interferometer testbed for a distributed small-satellites constellation[J]. Applied Optics, 2018, 57(11): 2736-2746 doi: 10.1364/AO.57.002736
    [39] XUE J W, JIANG A M, WANG S, et al. Design and experimental demonstration of pointing correction module for a Fizeau imaging interferometer[J]. Applied Optics, 2018, 57(34): 9936-9943 doi: 10.1364/AO.57.009936
    [40] 谢宗良. 相控望远镜阵列成像关键技术研究[D]. 成都: 中国科学院光电技术研究所, 2018

    XIE Zongliang. Study on key technology of phased telescope array imaging[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2018
    [41] XIE Z L, MA H T, QI B, et al. Restoration of sparse aperture images using spatial modulation diversity technology based on a binocular telescope testbed[J]. IEEE Photonics Journal, 2017, 9(3): 7802611
    [42] XIE Z L, MA H T, HE X J, et al. Adaptive piston correction of sparse aperture systems with stochastic parallel gradient descent algorithm[J]. Optics Express, 2018, 26(8): 9541-9551 doi: 10.1364/OE.26.009541
  • 加载中
图(17)
计量
  • 文章访问数:  713
  • HTML全文浏览量:  275
  • PDF下载量:  102
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-02-01
  • 修回日期:  2024-03-05
  • 网络出版日期:  2024-04-15

目录

    /

    返回文章
    返回