[1] |
田丰, 胡雄, 吴季. 系外行星大气与宜居系外行星研究进展及发展趋势[J]. 空间科学学报, 2016, 36(6): 815-827 doi: 10.11728/cjss2016.06.815TIAN Feng, HU Xiong, WU Ji. Research progress and prospect of exoplanetary atmospheres and habitable exoplanet sciences[J]. Chinese Journal of Space Science, 2016, 36(6): 815-827 doi: 10.11728/cjss2016.06.815
|
[2] |
王佳琪, 王汇娟, 王炜, 等. 太阳系外行星探测研究进展[J]. 天文学进展, 2021, 39(1): 1-28 doi: 10.3969/j.issn.1000-8349.2021.01.01WANG Jiaqi, WANG Huijuan, WANG Wei, et al. The recent progress of detection and research of exoplanets[J]. Progress in Astronomy, 2021, 39(1): 1-28 doi: 10.3969/j.issn.1000-8349.2021.01.01
|
[3] |
胡永云. 系外行星和系外生命——兼谈2019年度诺贝尔物理学奖[J]. 科学通报, 2019, 64(36): 3798-3807 doi: 10.1360/TB-2019-0720HU Yongyun. Searching for exoplanets and exo-life: On the 2019 nobel prize in physics[J]. Chinese Science Bulletin, 2019, 64(36): 3798-3807 doi: 10.1360/TB-2019-0720
|
[4] |
NASA. Exoplanet and Candidate Statistics[EB/OL]. (2023-12-28)[2023-12-28]. https://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html
|
[5] |
BRACEWELL R N. Detecting nonsolar planets by spinning infrared interferometer[J]. Nature, 1978, 274(5673): 780-781 doi: 10.1038/274780a0
|
[6] |
MARTIN S R, KSENDZOV A, LAY O, et al. TPF-Interferometer: a decade of development in exoplanet detection technology[C]//Proceedings of SPIE 8151, Techniques and Instrumentation for Detection of Exoplanets V. San Diego: SPIE, 2011: 81510D
|
[7] |
GABOR P. A Study of the Performance of A Nulling Interferometer Testbed Preparatory to the Darwin Mission[D]. Paris: Universite Paris Sud, 2009
|
[8] |
QUANZ S P, OTTIGER M, FONTANET E, et al. Large Interferometer For Exoplanets (LIFE): I. Improved exoplanet detection yield estimates for a large mid-infrared space-interferometer mission[J]. Astronomy & Astrophysics, 2022, 664: A21
|
[9] |
NASA Headquarters. Kepler Completes Prime Mission, Begins Extended Mission[EB/OL]. (2012-11-15)[2023-12-28]. https://www.astronomy.com/science/kepler-completes-prime-mission-begins-extended-mission/
|
[10] |
KIM S E. What Comes After the James Webb Space Telescope? Some Astronomers Want LIFE[EB/OL]. (2022-06-02)[2023-12-28]. https://www.popsci.com/science/next-james-webb-space-telescope-find-exoplanets/#The%20Origins%20of%20Life
|
[11] |
Kammerer J , Quanz S P . Simulating the Exoplanet Yield of a Space-based MIR Interferometer Based on Kepler Statistics[J]. Earth and Planetary Astrophysics , 2017, 609: A4
|
[12] |
乔彦峰, 刘坤, 段相永. 光学合成孔径成像技术及发展现状[J]. 中国光学与应用光学, 2009, 2(3): 175-183QIAO Yanfeng, LIU Kun, DUAN Xiangyong. Optical synthetic aperture imaging techniques and development[J]. Chinese Journal of Optics and Applied Optics, 2009, 2(3): 175-183
|
[13] |
周程灏, 王治乐, 朱峰. 大口径光学合成孔径成像技术发展现状[J]. 中国光学, 2017, 10(1): 25-38 doi: 10.3788/co.20171001.0025ZHOU Chenghao, WANG Zhile, ZHU Feng. Review on optical synthetic aperture imaging technique[J]. Chinese Optics, 2017, 10(1): 25-38 doi: 10.3788/co.20171001.0025
|
[14] |
GLINDEMANN A, ABUTER R, CARBOGNANI F, et al. The VLT Interferometer: a unique instrument for high-resolution astronomy[C]//Proceedings of SPIE 4006, Interferometry in Optical Astronomy. Munich: SPIE, 2000
|
[15] |
GLINDEMANN A, ALGOMEDO J, AMESTICA R, et al. The VLTI and its subsystems[J]. EAS Publications Series, 2003, 6: 91-91 doi: 10.1051/eas:2003008
|
[16] |
GLINDEMANN A. Introduction to Spatial Interferometry[EB/OL]. (2022)[2022]. https://www.eso.org/sci/facilities/paranal/telescopes/vlti/tuto/tutorial_spatial_interferometry.pdf
|
[17] |
林燮佳, 吴桢. 光学合成孔径成像技术的uv覆盖与孔径排列研究[J]. 应用光学, 2012, 33(1): 30-36LIN Xiejia, WU Zhen. Study on uv coverage of optical synthetic aperture imaging technology and optimization of aperture[J]. Journal of Applied Optics, 2012, 33(1): 30-36
|
[18] |
DEFRÈRE D, HINZ P, SKEMER A, et al. Exoplanet science with the LBTI: instrument status and plans[C]//Proceedings of SPIE 9605, Techniques and Instrumentation for Detection of Exoplanets VII. San Diego: SPIE, 2015: 96051G
|
[19] |
HILL J M, GREEN R F, SLAGLE J H. The large binocular telescope[C]//Proceedings of SPIE 7733, Ground-based and Airborne Telescopes III. San Diego: SPIE, 2006: 77330C
|
[20] |
ERTEL S, HINZ P M, STONE J M, et al. Overview and prospects of the LBTI beyond the completed HOSTS survey[C]//Proceedings of SPIE 11446, Optical and Infrared Interferometry and Imaging VII. Online Only: SPIE, 2020: 1144607
|
[21] |
PATRU F, ESPOSITO S, PUGLISI A, et al. The LBTI Fizeau imager – I. Fundamental gain in high-contrast imaging[J]. Monthly Notices of the Royal Astronomical Society, 2017, 472(3): 2544-2553 doi: 10.1093/mnras/stx1961
|
[22] |
HINZ P M, DEFRÈRE D, SKEMER A, et al. Overview of LBTI: a multipurpose facility for high spatial resolution observations[C]//Proceedings of SPIE 9907, Optical and Infrared Interferometry and Imaging V. Edinburgh: SPIE, 2016: 990704
|
[23] |
COLAVITA M M, WIZINOWICH P L, AKESON R L, et al. The Keck Interferometer[J]. Publications of the Astronomical Society of the Pacific, 2013, 125: 1226-1264 doi: 10.1086/673475
|
[24] |
VASISHT G, BOOTH A J, COLAVITA M M, et al. Performance and verification of the Keck interferometer fringe detection and tracking system[C]//Proceedings of SPIE 4838, Interferometry for Optical Astronomy II. Waikoloa: SPIE, 2003
|
[25] |
WOILLEZ J, AKESON R, COLAVITA M, et al. ASTRA: astrometry and phase-referencing astronomy on the Keck interferometer[C]//Proceedings of SPIE 7734, Optical and Infrared Interferometry II. San Diego: SPIE, 2010
|
[26] |
SCHÖLLER M. The very large telescope interferometer: current facility and prospects[J]. New Astronomy Reviews, 2007, 51(8/9): 628-638
|
[27] |
EISENHAUER F, PERRIN G, STRAUBMEIER C, et al. GRAVITY: microarcsecond astrometry and deep interferometric imaging with the VLTI[C]. Proceedings of the International Astronomical Union, 2007, 3 (S248): 100-101
|
[28] |
ABUTER R, ACCARDO M, AMORIM A, et al. First light for GRAVITY: Phase referencing optical interferometry for the very large telescope interferometer[J]. Astronomy & Astrophysics, 2017, 602: A94
|
[29] |
COCKELL C S, LEGER A, FRIDLUND M, et al. Darwin-a mission to detect and search for life on extrasolar planets[J]. Astrobiology, 2009, 9 (1): 1-22
|
[30] |
WALLNER O, ERGENZINGER K, FLATSCHER R, et al. DARWIN mission and configuration trade-of[C]//Proceedings of SPIE 6268, Advances in Stellar Interferometry. Orlando: SPIE, 2006: 626827
|
[31] |
FRIDLUND M, GONDOIN P. GENIE – the Darwin demonstrator[J]. Astrophysics and Space Science, 2003, 286(1): 93-98
|
[32] |
GONDOIN P, ABSIL O, FRIDLUND C V M, et al. Darwin ground-based European nulling interferometer experiment (GENIE)[C]//Proceedings of SPIE 4838, Interferometry for Optical Astronomy II. Waikoloa: SPIE, 2003: 700-711
|
[33] |
HENRY C, LAY O, AUNG M, et al. Terrestrial planet finder interferometer: architecture, mission design, and technology development[C]//Proceedings of SPIE 5491, New Frontiers in Stellar Interferometry. Glasgow: SPIE, 2004: 265-274
|
[34] |
LAWSON P R, LAY O P, JOHNSTON K J, et al. Terrestrial Planet Finder Interferometer Science Working Group Report[M]. California: Jet Propulsion Laboratory, 2007
|
[35] |
HANSEN J T, IRELAND M J, The LIFE Collaboration. Large Interferometer for Exoplanets (LIFE) IV. Ideal kernel-nulling array architectures for a space-based mid-infrared nulling interferometer[J]. Astronomy & Astrophysics, 2022, 664: A52
|
[36] |
RANGANATHAN M, GLAUSER A M, BIRBACHER T, et al. The nulling interferometer cryogenic experiment: I[C]//Proceedings of SPIE 12183, Optical and Infrared Interferometry and Imaging VIII. Montréal: SPIE, 2022: 121830L
|
[37] |
仝照远, 李萌, 崔程博, 等. 空间可展开薄膜遮光罩设计与分析[J]. 中国空间科学技术, 2021, 41(3): 82-88TONG Zhaoyuan, LI Meng, CUI Chengbo, et al. Design and analysis of the configuration of deployable membrane sunshield[J]. Chinese Space Science and Technology, 2021, 41(3): 82-88
|
[38] |
JIANG A M, WANG S, DONG Z C, et al. Wide-band white light sparse-aperture Fizeau imaging interferometer testbed for a distributed small-satellites constellation[J]. Applied Optics, 2018, 57(11): 2736-2746 doi: 10.1364/AO.57.002736
|
[39] |
XUE J W, JIANG A M, WANG S, et al. Design and experimental demonstration of pointing correction module for a Fizeau imaging interferometer[J]. Applied Optics, 2018, 57(34): 9936-9943 doi: 10.1364/AO.57.009936
|
[40] |
谢宗良. 相控望远镜阵列成像关键技术研究[D]. 成都: 中国科学院光电技术研究所, 2018XIE Zongliang. Study on key technology of phased telescope array imaging[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2018
|
[41] |
XIE Z L, MA H T, QI B, et al. Restoration of sparse aperture images using spatial modulation diversity technology based on a binocular telescope testbed[J]. IEEE Photonics Journal, 2017, 9(3): 7802611
|
[42] |
XIE Z L, MA H T, HE X J, et al. Adaptive piston correction of sparse aperture systems with stochastic parallel gradient descent algorithm[J]. Optics Express, 2018, 26(8): 9541-9551 doi: 10.1364/OE.26.009541
|