留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Construction and Research Progress of the Chinese Meridian Project in 2022–2023

WANG Chi CHEN Zhiqing XU Jiyao

WANG Chi, CHEN Zhiqing, XU Jiyao. Construction and Research Progress of the Chinese Meridian Project in 2022–2023. Chinese Journal of Space Science, 2024, 44(4): 704-711 doi: 10.11728/cjss2024.04.2024-yg20
Citation: WANG Chi, CHEN Zhiqing, XU Jiyao. Construction and Research Progress of the Chinese Meridian Project in 2022–2023. Chinese Journal of Space Science, 2024, 44(4): 704-711 doi: 10.11728/cjss2024.04.2024-yg20

Construction and Research Progress of the Chinese Meridian Project in 2022–2023

doi: 10.11728/cjss2024.04.2024-yg20 cstr: 32142.14.cjss2024.04.2024-yg20
Funds: Supported by National Major Science and Technology Infrastructure Construction Project: the Chinese Meridian Project (2017-000052-73-01-002390)
More Information
    Author Bio:

    Male, born in February 1967 in Shaoyang City, Hunan Province, China, is currently a professor at the National Space Science Center, Chinese Academy of Sciences (CAS), and an academician of the CAS. His research foc-uses on the large-scale structures of the solar wind, the interaction between the solar wind and Earth’s magnetosphere, and related fields. He has published more than 300 articles in a batch of academic journals like Nature. E-mail: cw@spaceweather.ac.cn

  • Figure  1.  Schematic diagram of the CMP’s space environment monitoring system

    Figure  2.  Circular array solar radio telescope (150−450 MHz)

    Figure  3.  IPS telescope array (the main station)

    Figure  4.  One of the MST radars (Qinzhou Station)

    Figure  5.  Mid-latitude high-frequency radar (Hejing station)

    Figure  6.  Multi-static incoherent scattering radar (the main station)

    Figure  7.  Array-type large aperture lidar

    Figure  8.  (a) Information and operation control center building, (b) the operation control center hall, and (c) the data and computing center facility

  • [1] WANG C. New chains of space weather monitoring stations in China[J]. Space Weather, 2010, 8(8): S08001 doi: 10.1029/2010SW000603
    [2] WANG C, XU J Y, LIU L B, et al. Contribution of the Chinese Meridian Project to space environment research: highlights and perspectives[J]. Science China Earth Sciences, 2023, 66(7): 1423-1438 doi: 10.1007/s11430-022-1043-3
    [3] WANG C, XU J Y, CHEN Z Q, et al. China’s ground-based space environment monitoring network – Chinese Meridian Project (CMP)[J]. Space Weather, 2024, 22(7): e2024SW003972 doi: 10.1029/2024SW003972
    [4] HOU Z Y, TIAN H, SU W, et al. A type II radio burst driven by a blowout jet on the Sun[J]. The Astrophysical Journal, 2023, 953(2): 171 doi: 10.3847/1538-4357/ace31b
    [5] YUE X N. Ionospheric pre-sunrise uplift: comparison of sanya incoherent scatter radar observations and numerical simu-lations[J]. Journal of Geophysical Research: Space Physics, 2023, 128(2): e2022JA031119 doi: 10.1029/2022JA031119
    [6] XIONG M, FENG X S, LI B, et al. Interplanetary scintillation observation and space weather modelling[J]. Frontiers in Astronomy and Space Sciences, 2023, 10: 1159166 doi: 10.3389/fspas.2023.1159166
    [7] YUE X N, WAN W X, NING B Q, et al. An active phased array in China[J] Nature Astronomy, 2022, 6 (5): 619
    [8] XIA Y, CHENG X W, WANG Z L, et al. Design of a data acquisition, correction and retrieval of Na doppler lidar for diurnal measurement of temperature and wind in the mesosphere and lower thermosphere region[J]. Remote Sensing, 2023, 15(21): 5140 doi: 10.3390/rs15215140
    [9] HE M S, FORBES J M. Rossby wave second harmonic generation observed in the middle atmosphere[J]. Nature Communications, 2022, 13(1): 7544. DOI: 10.1038/s41467-022- 35142-3
    [10] LIU X, XU J Y, YUE J, et al. Variations in global zonal wind from 18 to 100 km due to solar activity and the quasi-biennial oscillation and El Niño–Southern Oscillation during 2002-2019[J]. Atmospheric Chemistry and Physics, 2023, 23(11): 6145-6167 doi: 10.5194/acp-23-6145-2023
    [11] GONG Y, XUE J W, MA Z, et al. Observations of a strong intraseasonal oscillation in the MLT region during the 2015/2016 winter over Mohe, China[J]. Journal of Geophysical Research: Space Physics, 2022, 127(6): e2021JA030076 doi: 10.1029/2021JA030076
    [12] JIAO J, CHU X, JIN H, et al. First lidar profiling of meteoric Ca+ Ion transport from ~80 to 300 km in the midlatitude nighttime ionosphere[J]. Geophysical Research Letters, 2022, 49(18): e2022GL100537 doi: 10.1029/2022GL100537
    [13] YU B K, XUE X H, SCOTT C J, et al. An empirical model of the ionospheric sporadic E layer based on GNSS radio occultation data[J]. Space Weather, 2022, 20(8): e2022SW003113 doi: 10.1029/2022SW003113
    [14] LIU L B, YANG Y Y, ZHANG R L, et al. Structure of post-midnight enhancements in electron density at the low latitude F-layer ionosphere[J]. Journal of Geophysical Research: Space Physics, 2023, 128(4): e2023JA031376 doi: 10.1029/2023JA031376
    [15] SUN L C, XU J Y, ZHU Y J, et al. Multi-source perturbations in the evolution of a low-latitudinal equatorial plasma bubble event occurred over China[J]. Space Weather, 2023, 21(3): e2022SW003293 doi: 10.1029/2022SW003293
    [16] LIU J J, CHAKRABORTY S, CHEN X C, et al. Transient response of polar-cusp ionosphere to an interplanetary shock[J]. Journal of Geophysical Research: Space Physics, 2023, 128(3): e2022JA030565 doi: 10.1029/2022JA030565
    [17] TARIQ M A, YANG Y Y, SHAH M, et al. Ionospheric-Thermospheric responses to the May and September 2017 geomagnetic storms over Asian regions[J]. Advances in Space Research, 2022, 70(11): 3731-3744 doi: 10.1016/j.asr.2022.08.050
    [18] ZHANG J J, XU J Y, WANG W, et al. Oscillations of the ionosphere caused by the 2022 Tonga volcanic eruption observed with SuperDARN radars[J]. Geophysical Research Letters, 2022, 49(20): e2022GL100555 doi: 10.1029/2022GL100555
    [19] LI Q Z, XU J Y, LIU H L, et al. How do gravity waves triggered by a typhoon propagate from the troposphere to the upper atmosphere?[J]. Atmospheric Chemistry and Physics, 2022, 22(18): 12077-12091 doi: 10.5194/acp-22-12077-2022
    [20] MA H, HE M S, LIU L B, et al. Solar tide-like signatures in the ionospheric total electron content during the 2018 sudden stratospheric warming event[J]. Space Weather, 2022, 20(9): e2022SW003042 doi: 10.1029/2022SW003042
  • 加载中
图(8)
计量
  • 文章访问数:  301
  • HTML全文浏览量:  151
  • PDF下载量:  39
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-06-15
  • 网络出版日期:  2024-08-01

目录

    /

    返回文章
    返回