留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模糊控制的深空探测器不确定姿态控制方法设计

杜宇 金士博 杨东来 黄行蓉

杜宇, 金士博, 杨东来, 黄行蓉. 基于模糊控制的深空探测器不确定姿态控制方法设计[J]. 空间科学学报, 2024, 44(5): 928-938. doi: 10.11728/cjss2024.05.2023-0128
引用本文: 杜宇, 金士博, 杨东来, 黄行蓉. 基于模糊控制的深空探测器不确定姿态控制方法设计[J]. 空间科学学报, 2024, 44(5): 928-938. doi: 10.11728/cjss2024.05.2023-0128
DU Yu, JIN Shibo, YANG Donglai, HUANG Xingrong. Design of Uncertain Attitude Control Method for Deep Space Probe Based on Fuzzy Control (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 928-938 doi: 10.11728/cjss2024.05.2023-0128
Citation: DU Yu, JIN Shibo, YANG Donglai, HUANG Xingrong. Design of Uncertain Attitude Control Method for Deep Space Probe Based on Fuzzy Control (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 928-938 doi: 10.11728/cjss2024.05.2023-0128

基于模糊控制的深空探测器不确定姿态控制方法设计

doi: 10.11728/cjss2024.05.2023-0128 cstr: 32142.14.cjss2024.05.2023-0128
基金项目: 国家自然科学基金项目(52105083, 52175071), 航空发动机及燃气轮机基础科学中心国际合作项目(P2022-C-III-001-001)和先进航空动力创新工作站项目共同资助(HKCX2020-02-016)
详细信息
    作者简介:
    • 杜宇 男, 1987年1月出生于吉林省长春市, 现为北京空间飞行器总体设计部总体副主任设计师, 主要研究方向为航天器总体设计. E-mail: yudu0119@163.com
    通讯作者:
    • 黄行蓉 女, 1989年6月出生于湖北省潜江市, 现为北京航空航天大学中法工程师学院/国际通用工程学院, 硕士生导师, 主要研究方向为航空航天飞行器动力学与控制、非线性动力学、流固耦合动力学等. E-mail: huangxingrong@buaa.edu.cn
  • 中图分类号: V57

Design of Uncertain Attitude Control Method for Deep Space Probe Based on Fuzzy Control

  • 摘要: 在空间探测任务中, 探测器的姿态控制是保证各项任务完成的基础, 虽然探测器的着陆控制技术已日趋成熟, 但地外起飞阶段的姿态控制研究还相对较少. 本文设计了一种适用于深空探测器在外星不确定性环境下起飞时的模糊控制器, 通过对姿态角与角速度进行分档模糊化处理降低计算量; 建立将姿态角和角速度映射到输出力矩的模糊控制规则; 根据模糊规则输出的模糊量, 通过去模糊化得到控制器的开关状态输出, 实现对探测器姿态的快速有效控制. 利用数值仿真测试了控制器的控制效果, 以及在起飞初始姿态和发动机安装存在偏差时的鲁棒性, 在ADAMS环境下对探测器起飞过程进行物理仿真. 结果表明, 相比于经典PD控制方法在实际模型与理想模型有差别时导致的控制发散, 该控制器在参数不确定下具有更强的鲁棒性, 满足了深空探测器自主起飞时对姿态控制的需求.

     

  • 图  1  ϕ, $\psi $, γ角的定义

    Figure  1.  Definition of angle ϕ, $\psi $, γ

    图  2  模糊控制器结构

    Figure  2.  Fuzzy controller structure

    图  3  0~15 s 时探测器姿态角时域曲线

    Figure  3.  Time domain curve of detector attitude angle at 0~15 s

    图  4  0~50 s时探测器姿态角时域曲线

    Figure  4.  Time domain curve of detector attitude angle at 0~50 s

    图  5  探测器各轴角速度时域曲线

    Figure  5.  Time domain curve of detector angular velocity

    图  6  不同初始滚转角下的姿态控制测试

    Figure  6.  Attitude control test under different initial roll angles

    图  7  不同初始俯仰角与偏航角下的姿态控制

    Figure  7.  Attitude control under different initial pitch angle and yaw angle

    图  8  轨控发动机安装误差下进行姿态控制的角度变化

    Figure  8.  Angle change of attitude control under the error of orbit control engine installation

    图  9  轨控发动机安装误差下进行姿态控制的角速度变化

    Figure  9.  Angular velocity change of attitude control under orbit control engine installation error

    图  10  模糊控制与PD控制对比

    Figure  10.  Comparison of fuzzy control and PD control

    图  11  使用模糊控制调整至目标角度过程的角度变化

    Figure  11.  Use fuzzy control to adjust the angle change auring the process to the target angle

    图  12  使用模糊控制调整至目标角度过程的角速度变化

    Figure  12.  Use fuzzy control to adjust the angular velocity change during the process to the target angle

    图  13  使用模糊控制时两个姿控发动机的开关情况

    Figure  13.  Switching situation of two attitude control engines when fuzzy control is used

    图  14  使用PD控制调整至目标角度过程的角度变化

    Figure  14.  Use PD control to adjust the angle change during the process to the target angle

    表  1  姿态角误差$ {\Delta }{\boldsymbol{\phi}} $, $ {\Delta }{\boldsymbol{\psi }}$, $ {\Delta }{\boldsymbol{\gamma }}$的模糊化

    Table  1.   Fuzzy attitude angle error $ {\Delta }{\boldsymbol{\phi}} $, $ {\Delta }{\boldsymbol{\psi }}$, $ {\Delta }{\boldsymbol{\gamma }}$

    姿态角误差 模糊控制集 论域
    $ (-\mathrm{\infty },-{\theta }_{\mathrm{t}\mathrm{h}\mathrm{r}}] $ NB –2
    $ \left(-{\theta }_{\mathrm{t}\mathrm{h}\mathrm{r}},0\right) $ NS –1
    $ 0 $ ZO 0
    $ \left(0,{\theta }_{\mathrm{t}\mathrm{h}\mathrm{r}}\right) $ PS 1
    $ \left[{\theta }_{\mathrm{t}\mathrm{h}\mathrm{r}},\infty \right) $ PB 2
    下载: 导出CSV

    表  2  姿态角误差$ {\Delta }{\dot{{\boldsymbol{\theta }}}}_{z} $, $ {\Delta }{\dot{{\boldsymbol{\theta }}}}_{y} $, $ {\Delta }{\dot{{\boldsymbol{\theta }}}}_{x} $的模糊化

    Table  2.   Fuzzy attitude angular velocity error ${\Delta }{\dot{{\boldsymbol{\theta }}}}_{z} $, ${\Delta }{\dot{{\boldsymbol{\theta }}}}_{y} $, ${\Delta }{\dot{{\boldsymbol{\theta }}}}_{x} $

    姿态角误差 模糊控制集 论域
    $ \left(-\mathrm{\infty },-{\omega }_{\mathrm{s}\mathrm{u}\mathrm{p}}\right] $ NB –3
    $ \left(-{\omega }_{\mathrm{s}\mathrm{u}\mathrm{p}},-{\omega }_{\mathrm{i}\mathrm{n}\mathrm{f}}\right] $ NM –2
    $ \left(-{\omega }_{\mathrm{i}\mathrm{n}\mathrm{f}},0\right) $ NS –1
    $ 0 $ ZO 0
    $ \left(0,{\omega }_{\mathrm{i}\mathrm{n}\mathrm{f}}\right) $ PS 1
    $ \left[{\omega }_{\mathrm{i}\mathrm{n}\mathrm{f}},{\omega }_{\mathrm{s}\mathrm{u}\mathrm{p}}\right) $ PM 2
    $ \left[{\omega }_{\mathrm{s}\mathrm{u}\mathrm{p}},\mathrm{\infty }\right) $ PB 3
    下载: 导出CSV

    表  3  模糊规则控制表

    Table  3.   Fuzzy rule control table

    姿态角
    误差
    角速度误差
    PB PM PS ZO NS NM NB
    PB PB PB PB PB PB PS NS
    PS B PB PB PB PS NS NS
    ZO PB PB PB ZO NS NS NS
    NS PS PS NS NS NB NB NB
    NB PS NS NB NB NB NB NB
    下载: 导出CSV

    表  4  探测器俯仰与偏航通道姿控发动机组合输出力矩

    Table  4.   Combined output torque of the attitude control engine of the detector pitch and yaw channel

    启动的姿控发动机编号$ {M}_{y} $论域$ {M}_{z} $论域
    3, 7NBNB
    4, 7NBPS
    4, 8NBPB
    7NBNS
    3NSNS
    4NSPS
    8NSPB
    3, 6NSNB
    1, 8PSPB
    6PSNB
    2PSNS
    5PBPS
    1PSPS
    2, 6PBNB
    2, 5PBNS
    1, 5PBPB
    下载: 导出CSV

    表  5  探测器滚转通道姿控发动机组合输出力矩

    Table  5.   Detector roll channel attitude control engine combination output torque

    启动的姿控发动机编号$ {M}_{x} $论域
    10, 12NB
    12NS
    9PS
    9, 11PB
    下载: 导出CSV
  • [1] ZHANG Rongqiao, HUANG Jiangchuan, HE Rongwei, et al. The development overview of asteroid exploration[J]. Journal of Deep Space Exploration, 2019, 6(5): 417-423,455
    [2] ZHENG Wei, XU Houze, ZHONG Min, et al. Progress in international lunar exploration programs[J]. Progress in Geophysics, 2012, 27(6): 2296-2307 doi: 10.6038/j.issn.1004-2903.2012.06.004
    [3] HU Jianguo, SHI Yaozu, ZHAO Yi, et al. Study on take-off stability boundaries of lunar detector[J]. Chinese Space Science and Technology, 2016, 36(5): 40-47
    [4] WU Weiren, YU Dengyun. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration, 2014, 1(1): 5-17
    [5] CHEN Chao, XU Rui, LI Zhaoyu, et al. Plan repair method of deep space probe based on the expected state sequence[J]. Journal of Astronautics, 2021, 42(11): 1385-1395 doi: 10.3873/j.issn.1000-1328.2021.11.005
    [6] WANG Xin, ZHAO Qingjie, YU Chongchong, et al. Path planning method of soft landing for multi-node probe[J]. Journal of Astronautics, 2022, 43(3): 366-373
    [7] HUANG Wenhu, CAO Dengqing, HAN Zengyao. Advances and trends in dynamics and control of spacecrafts[J]. Advances in Mechanics, 2012, 42(4): 367-394
    [8] WIDNALL W S. The minimum-time thrust-vector control law in the Apollo lunar-module autopilot[J]. IFAC Proceedings Volumes, 1970, 3(1): 136-153 doi: 10.1016/S1474-6670(17)68773-1
    [9] ZHANG Honghua, GUAN Yifeng, HUANG Xiangyu, et al. Guidance navigation and control for Chang’E-3 powered descent[J]. Scientia Sinica Technologica, 2014, 44(4): 377-384 doi: 10.1360/092014-43
    [10] ZHANG Honghua, LI Ji, YU Ping, et al. Guidance navigation and control technology for the lunar ascent vehicle of the Chang’E-5 mission[J]. Scientia Sinica Technologica, 2021, 51(8): 921-937 doi: 10.1360/SST-2021-0102
    [11] TEWARI A. Optimal nonlinear spacecraft attitude control through Hamilton-Jacobi formulation[J]. The Journal of the Astronautical Sciences, 2002, 50(1): 99-112 doi: 10.1007/BF03546332
    [12] LIANG Y W, XU S D, CHU T C, et al. Application of VSC reliable design to spacecraft attitude tracking[C]//Proceedings of the 2005, American Control Conference, 2005. Portland: IEEE, 2005
    [13] SUN Liang, HUO Wei. Satellite attitude robust nonlinear stabilization and tracking control with constrained inputs[J]. Aerospace Control and Application, 2011, 37(4): 24-30
    [14] ZOU A M, KUMAR K D, HOU Z G. Quaternion-based adaptive output feedback attitude control of spacecraft using Chebyshev neural networks[J]. IEEE Transactions on Neural Networks, 2010, 21(9): 1457-1471 doi: 10.1109/TNN.2010.2050333
    [15] GUAN P, LIU X J, LIU J Z. Adaptive fuzzy sliding mode control for flexible satellite[J]. Engineering Applications of Artificial Intelligence, 2005, 18(4): 451-459 doi: 10.1016/j.engappai.2004.11.003
    [16] OH H S, YOON Y D, CHANG Y K, et al. Near-eigenaxis rotation control law design for moving-to-rest maneuver[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(6): 1228-1231 doi: 10.2514/2.4840
    [17] SEO D, AKELLA M R. Separation property for the rigid-body attitude tracking control problem[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(6): 1569-1576 doi: 10.2514/1.30296
    [18] ALIABBASI M, TALEBI H A, KARRARI M. A satellite attitude controller using nonlinear H∞ approach[C]//Proceedings of the 41st IEEE Conference on Decision and Control, 2002. Las Vegas: IEEE, 2002
    [19] SUN Duoqing. Adaptive fuzzy fault-tolerant coordinated driving control for a six-wheeled rocker-arm lunar rover[J]. Journal of Astronautics, 2012, 33(1): 76-84
    [20] WANG Guotao, WANG Siyi, LIANG Ansheng, et al. Research of space relay remainders-detection technique based on ADAMS[J]. Low Voltage Apparatus, 2013(3): 11-16, 54
    [21] ZHANG Wei. Research on Multi-body Dynamics and Vibration Control of Spacecraft Solar Array System[D]. Harbin: Harbin Institute of Technology, 2021
  • 加载中
图(14) / 表(5)
计量
  • 文章访问数:  267
  • HTML全文浏览量:  112
  • PDF下载量:  19
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-11-13
  • 修回日期:  2023-12-27
  • 网络出版日期:  2024-05-11

目录

    /

    返回文章
    返回