留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于银川电离层垂测仪电子浓度反演的一次强电离层暴观测

韩思佳 梁珍珍 郭伟 王彩云 方青钰 李玲玲

韩思佳, 梁珍珍, 郭伟, 王彩云, 方青钰, 李玲玲. 基于银川电离层垂测仪电子浓度反演的一次强电离层暴观测[J]. 空间科学学报, 2024, 44(5): 782-793. doi: 10.11728/cjss2024.05.2023-0148
引用本文: 韩思佳, 梁珍珍, 郭伟, 王彩云, 方青钰, 李玲玲. 基于银川电离层垂测仪电子浓度反演的一次强电离层暴观测[J]. 空间科学学报, 2024, 44(5): 782-793. doi: 10.11728/cjss2024.05.2023-0148
HAN Sijia, LIANG Zhenzhen, GUO Wei, WANG Caiyun, FANG Qingyu, LI Lingling. Observation of a Strong Ionospheric Storm Based on Electron Density Inversion of Yinchuan Vertical Ionosonde (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 782-793 doi: 10.11728/cjss2024.05.2023-0148
Citation: HAN Sijia, LIANG Zhenzhen, GUO Wei, WANG Caiyun, FANG Qingyu, LI Lingling. Observation of a Strong Ionospheric Storm Based on Electron Density Inversion of Yinchuan Vertical Ionosonde (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 782-793 doi: 10.11728/cjss2024.05.2023-0148

基于银川电离层垂测仪电子浓度反演的一次强电离层暴观测

doi: 10.11728/cjss2024.05.2023-0148 cstr: 32142.14.cjss2024.05.2023-0148
基金项目: 国家民用空间基础设施陆地观测卫星共性应用支撑平台项目资助(2017-000052-73-01-001735)
详细信息
    作者简介:
    • 韩思佳 女, 1994年12月出生于内蒙古自治区包头市. 现为中国科学院国家空间科学中心在读博士研究生, 主要研究方向为电离层探测技术、电子浓度反演等. E-mail: hansijia18@mails.ucas.ac.cn
    通讯作者:
    • 郭伟 男, 1967年7月出生于吉林省长春市. 现为中国科学院国家空间科学中心研究员、博士生导师, 主要研究方向为电离层探测技术, 主、被动雷达系统设计与研制, 目标信息获取与处理, 微波遥感器测试与定标等. E-mail: guowei@nssc.ac.cn
  • 中图分类号: P352

Observation of a Strong Ionospheric Storm Based on Electron Density Inversion of Yinchuan Vertical Ionosonde

  • 摘要: 根据银川电离层垂测仪的回波数据, 采用脉冲压缩技术, 使用Bernoulli映射序列对发射信号进行编码, 解决实际探测中回波信号混合强杂波干扰的问题, 从而获得高质量频高图. 为从图中提取电离层的关键信息, 将信号处理问题转换成计算机视觉中的语义分割任务, 构建原始频高图数据集, 并进行离散化和人工标注等预处理. 通过训练cGAN神经网络分析得到频高图中各层回波的特征参数, 达到分割不同描迹的目的. 采用改进式国际参考电离层底部反演模型和NeQuick顶部模型对垂测仪上空的电子浓度剖面进行反演, 根据张衡一号卫星的实测数据对顶部的计算结果进行修正. 通过将计算得到的总电子浓度与CDDIS公开的数据结果对比, 验证了垂测仪数据的准确性. 在此基础上, 结合高沙窝磁通门的地磁数据, 垂测仪于2023年4月23-24日的大地磁暴期间成功观测到电离层异常变化的全过程并给出了总电子浓度变化结果, 为探究中国西部电磁环境变化提供准确可靠的观测数据.

     

  • 图  1  垂测仪系统

    Figure  1.  Diagram of the vertical ionosonde

    图  2  垂测仪硬件组成部分. (a) Delta天线, (b)操作主机

    Figure  2.  Field deployment of the vertical ionosonde. (a) Delta antenna, (b) operations master

    图  3  两种编码在不同反射频率下的自相关函数对比

    Figure  3.  Comparison of the two sequences ACFs at different frequencies

    图  4  原始频高图及其对应的分类 (右列为经由cGAN网络分类提取的描迹)

    Figure  4.  Original ionograms and its corresponding classification graph (Trace extracted by cGAN network classification is listed on the right)

    图  5  理论电离层电子浓度反演曲线

    Figure  5.  Theoretical ionospheric electron density inversion curves

    图  6  典型电子浓度剖面及日变化. (a)~(d) 经由朗缪尔探针修正电子浓度剖面, (e)当地总电子浓度日变化

    Figure  6.  Electron density profile and diurnal variation of typical ionograms. (a)~(d) modified electron density profiles via Langmuir probe, (e) diurnal variation of local TEC

    图  7  Kp指数(a), 高沙窝磁通门地磁总场(b), 当地F2层临界频率(c), 总电子浓度(d)的变化情况

    Figure  7.  Variations of Kp index (a), total magnetic field value of Gaoshavo flux gate (b), critical frequency of F2 layer (c), and total electron content(d)

    图  8  2023年4月23-25日电离层日变化频高图

    Figure  8.  Diurnal variation of the ionograms on 23-25 April 2023

    表  1  银川电离层垂测仪系统参数

    Table  1.   Yinchuan vertical ionosonde system parameters

    指标 参数
    天线 Delta天线
    传输峰值功率/W 500
    编码类型 40位Bernoulli序列、
    类巴克码、m序列
    码元时宽/μs 10
    工作频率/MHz 1~30
    步进频率/kHz 25, 50, 100
    接收机带宽/kHz 100
    IF/MHz 70
    ADC采样/MHz 40
    相干累积次数 100
    探测距离/km 67.5~560.1
    距离分辨率/km 1.5
    探测时长/min 7.36, 3.68, 1.84
    采样间隔/min 15
    下载: 导出CSV
  • [1] DAVIES K. Ionospheric Radio[M]. London: P. Peregrinus on Behalf of the Institution of Electrical Engineers, 1990
    [2] GHEBREBRHAN O, LUCE H, YAMAMOTO M, et al. Interference suppression factor characteristics of complementary codes for ST/MST radar applications[J]. Radio Science, 2004, 39(3): RS3013
    [3] XIAO Z W, WANG J, LI J, et al. Deep-learning for ionogram automatic scaling[J]. Advances in Space Research, 2020, 66(4): 942-950 doi: 10.1016/j.asr.2020.05.009
    [4] 刘立波, 陈一定, 乐会军, 等. “120°E子午链上空电离层响应和应用模式”一般性科技报告[J]. 科技创新导报, 2016, 13(20): 180-181

    LIU Libo, CHEN Yiding, YUE Huijun, et al. General aeport on “response and application models of the ionosphere over 120°E meridional chain”[J]. Science and Technology Innovation Herald, 2016, 13(20): 180-181
    [5] 王威, 颜毅华, 谭宝林, 等. 子午工程二期宽波段太阳射电频谱监测[J]. 地球与行星物理论评(中英文), 2024, 55(1): 1-5

    WANG Wei, YAN Yihua, TAN Baolin, et al. Wide-band solar radio spectral monitoring in the phase II of Chinese meridian project[J]. Reviews of Geophysics and Planetary Physics, 2024, 55(1): 1-5
    [6] 王铮, 曹光伟, 胡连欢, 等. 子午工程二期GNSS电离层TEC与闪烁监测仪样机测试及数据对比分析[J]. 地球与行星物理论评(中英文), 2024, 55(1): 77-93

    WANG Zheng, CAO Guangwei, HU Lianhuan, et al. Domestic global navigation satellite system ionospheric total electron content and scintillation monitor prototype testing and data quality comparison analysis for the phase II of Chinese meridian project[J]. Reviews of Geophysics and Planetary Physics, 2024, 55(1): 77-93
    [7] 朱正平. 电离层垂直探测中的观测模式研究[D]. 武汉: 中国科学院研究生院(武汉物理与数学研究所), 2006

    ZHU Zhengping. Studies of Observation Mode in Ionospheric Vertical Sounding[D]. Wuhan: Wuhan Institute of Physics and Mathematics (WIPM) of Chinese Academy of Sciences, 2006
    [8] SCOTTO C. A method for processing ionograms based on correlation technique[J]. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, 2001, 26 (5): 367-371
    [9] PEZZOPANE M, SCOTTO C. Automatic scaling of critical frequency f0F2 and MUF (3000)F2: a comparison between autoscala and ARTIST 4.5 on Rome data[J]. Radio Science, 2007, 42(4): RS4003
    [10] PEZZOPANE M, SCOTTO C. Software for the automatic scaling of critical frequency f0F2 and MUF(3000)F2 from ionograms applied at the ionospheric observatory of Gibilmanna[J]. Annals of Geophysics, 2004, 47(6): 1783-1790
    [11] 靳梦雅. 一种高性能电离层测高仪的天线设计与数控系统研制[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2020

    JIN Mengya. Antenna Design and Digital Control System Development of a High Performance Ionosonde[D]. Beijing: National Space Science Center, Chinese Academy of Sciences, 2020
    [12] 靳梦雅, 郭伟, 刘鹏, 等. 基于FPGA的高性能电离层测高仪数控系统设计[J]. 空间科学学报, 2021, 41(4): 580-588 doi: 10.11728/cjss2021.04.580

    JIN Mengya, GUO Wei, LIU Peng, et al. Design of digital control system for high-performance ionosonde based on FPGA[J]. Chinese Journal of Space Science, 2021, 41(4): 580-588 doi: 10.11728/cjss2021.04.580
    [13] 赵港权. 银川电离层雷达回波数据处理[D]. 北京: 中国科学院大学(中国科学院国家空间科学中心), 2022

    ZHAO Gangquan. Ionospheric Radar Echo Data Processing in Yinchuan Area[D]. Beijing: National Space Science Center, Chinese Academy of Sciences, 2022
    [14] 赵港权, 王彩云, 刘大鹏, 等. 低功耗电离层垂测仪系统及在银川地区的试验[J]. 空间科学学报, 2023, 43(4): 618-626 doi: 10.11728/cjss2023.04.220127011

    ZHAO Gangquan, WANG Caiyun, LIU Dapeng, et al. Development of a low-power ionosonde in Yinchuan and analysis of preliminary test results[J]. Chinese Journal of Space Science, 2023, 43(4): 618-626 doi: 10.11728/cjss2023.04.220127011
    [15] HAN S J, GUO W, LIU P, et al. Chaotic coding for interference suppression of digital ionosonde[J]. Remote Sensing, 2023, 15(15): 3747 doi: 10.3390/rs15153747
    [16] LIU C, GUAN Y B, ZHENG X Z, et al. The technology of space plasma in-situ measurement on the China seismo-electromagnetic satellite[J]. Science China Technological Sciences, 2019, 62(5): 829-838 doi: 10.1007/s11431-018-9345-8
    [17] PEZZOPANE M, PIGNALBERI A. The ESA swarm mission to help ionospheric modeling: a new NeQuick topside formulation for mid-latitude regions[J]. Scientific Reports, 2019, 9(1): 12253 doi: 10.1038/s41598-019-48440-6
    [18] SCOTTO C. Electron density profile calculation technique for Autoscala ionogram analysis[J]. Advances in Space Research, 2009, 44(6): 756-766 doi: 10.1016/j.asr.2009.04.037
    [19] 王华旭, 郭文玲, 蔚娜, 等. 电离层垂直剖面建模方法改进研究[J]. 电波科学学报, 2017, 32(1): 73-78

    WANG Huaxu, GUO Wenling, WEI Na, et al. The method improvement of ionospheric vertical profile model[J]. Chinese Journal of Radio Science, 2017, 32(1): 73-78
    [20] 泽仁志玛, 刘大鹏, 孙晓英, 等. 张衡一号电磁卫星在轨情况及主要的科学成果[J]. 地球与行星物理论评(中英文), 2023, 54(4): 455-465

    ZEREN Zhima, LIU Dapeng, SUN Xiaoying, et al. Current status and scientific progress of the Zhangheng-1 satellite mission[J]. Reviews of Geophysics and Planetary Physics, 2023, 54(4): 455-465
    [21] TSMOTS I, RIZNYK O, RABYK V, et al. Implementation of FPGA-based barker’s-like codes[C]//Proceedings of the XV International Scientific Conference “Intellectual Systems of Decision Making and Problems of Computational Intelligence”. Cham: Springer, 2020: 203-214
    [22] 孙直申, 刘小军, 赵博. 互补码在电离层探测中的应用[J]. 科学技术与工程, 2011, 11(21): 5047-5052

    SUN Zhishen, LIU Xiaojun, ZHAO Bo. Application of complementary codes in ionosphere sounding[J]. Science Technology and Engineering, 2011, 11(21): 5047-5052
    [23] LIU T X, YANG G B, HU Y G, et al. A novel ionospheric sounding network based on complete complementary code and its application[J]. Sensors, 2019, 19(4): 779 doi: 10.3390/s19040779
    [24] BOSTAN S M, URBINA J V, MATHEWS J D, et al. An HF software‐defined radar to study the ionosphere[J]. Radio Science, 2019, 54(9): 839-849 doi: 10.1029/2018RS006773
    [25] SEMETER J, BUTLER T, HEINSELMAN C, et al. Volumetric imaging of the auroral ionosphere: initial results from PFISR[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2009, 71(6/7): 738-743
    [26] LI J, LIU M, OU J P, et al. A novel radar waveform design for suppressing autocorrelation side-lobe based on chaotic and single fusion encoding method[J]. Progress in Electromagnetics Research M, 2022, 111: 77-88 doi: 10.2528/PIERM22042202
    [27] 陈锟. 电离层数字测高仪的研制[D]. 武汉: 中南民族大学, 2009

    CHEN Kun. Design of the Ionosonde[D]. Wuhan: South-Central Minzu University, 2009
    [28] 王顺, 陈紫微, 张锋, 等. 一种数字电离层测高仪系统中O波与X波的分离方法[J]. 空间科学学报, 2014, 34(2): 186-193 doi: 10.11728/cjss2014.02.186

    WANG Shun, CHEN Ziwei, ZHANG Feng, et al. A method for separating O wave and X wave in digital ionosonde[J]. Chinese Journal of Space Science, 2014, 34(2): 186-193 doi: 10.11728/cjss2014.02.186
    [29] 徐高峰. 基于图像处理的电离层垂测频高图参数提取方法的研究[D]. 青岛: 中国海洋大学, 2014

    XU Gaofeng. Study on Parameters Extraction in Ionogram Based on Image Processing[D]. Qingdao: Ocean University of China, 2014
    [30] 卢红光. 基于图像处理的垂测频高图E、Es层描迹自动判读研究[D]. 青岛: 中国海洋大学, 2013

    LU Hongguang. Study on Automatic Scaling of E, Es in Ionogram Based on Image Processing[D]. Qingdao: Ocean University of China, 2013
    [31] REINISCH B W, HUANG X Q. Low latitude digisonde measurements and comparison with IRI[J]. Advances in Space Research, 1996, 18(6): 5-12 doi: 10.1016/0273-1177(95)00892-6
    [32] HUANG X Q, REINISCH B W. Vertical electron density profiles from the Digisonde network[J]. Advances in Space Research, 1996, 18(6): 121-129 doi: 10.1016/0273-1177(95)00912-4
    [33] HUANG H, MOSES M, VOLK A E, et al. Assessment of IRI-2016 f0F2 and hmF2 model options with digisonde, COSMIC and ISR observations for low and high solar flux conditions[J]. Advances in Space Research, 2021, 68(5): 2093-2103 doi: 10.1016/j.asr.2021.01.033
    [34] BILITZA D, PEZZOPANE M, TRUHLIK V, et al. The international reference ionosphere model: a review and description of an ionospheric benchmark[J]. Reviews of Geophysics, 2022, 60(4): e2022RG000792 doi: 10.1029/2022RG000792
    [35] EZQUER R G, SCIDÁ L A, MIGOYA ORUÉ Y O, et al. NeQuick 2 total electron content predictions for middle lati-tudes of north American region during a deep solar mini-mum[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 154: 55-66 doi: 10.1016/j.jastp.2016.12.014
    [36] WATANABE S, MIYOSHI Y, TSUCHIYA F, et al. Modeling of topside ionosphere and plasmasphere[J]. Research Square, 2021
    [37] MARINOV P, KUTIEV I, BELEHAKI A, et al. Modeling the plasmasphere to topside ionosphere scale height ratio[J]. Journal of Space Weather and Space Climate, 2015, 5: A27 doi: 10.1051/swsc/2015028
    [38] SCOTTO C, SABBAGH D. Improvements in bottomside electron density definition in the autoscala program[J]. Advances in Space Research, 2020, 65(5): 1432-1438 doi: 10.1016/j.asr.2019.12.004
    [39] SCOTTO C, SABBAGH D, IPPOLITO A. Accuracy of hmF2 estimations, including IRI-2020 options and ionograms validated parameters, compared to ISR measurements at Millstone Hill[J]. Advances in Space Research, 2023, 72(8): 3202-3211 doi: 10.1016/j.asr.2023.07.012
    [40] SCOTTO C, RADICELLA S M, ZOLESI B. An improved probability function to predict the F1 layer occurrence and L condition[J]. Radio Science, 1998, 33(6): 1763-1765 doi: 10.1029/98RS02637
    [41] NAVA B, COÏSSON P, RADICELLA S M. A new version of the NeQuick ionosphere electron density model[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2008, 70(15): 1856-1862 doi: 10.1016/j.jastp.2008.01.015
    [42] PIGNALBERI A, PEZZOPANE M, ALBERTI T, et al. Modeling the topside ionosphere effective scale height through in situ electron density observations by low-earth-orbit satellites[J]. Universe, 2023, 9(6): 280 doi: 10.3390/universe9060280
    [43] YAN R, GUAN Y B, SHEN X H, et al. The Langmuir probe onboard CSES: data inversion analysis method and first results[J]. Earth and Planetary Physics, 2018, 2(6): 479-488
    [44] 孙晓英, 段素平, 刘维宁. 第23太阳活动周太阳极紫外辐射与磁暴相关性分析[J]. 空间科学学报, 2021, 41(5): 697-703 doi: 10.11728/cjss2021.05.697

    SUN Xiaoying, DUAN Suping, LIU Weining. Correlation analysis between magnetic storms and solar extreme ultraviolet radiation during the 23rd solar cycle[J]. Chinese Journal of Space Science, 2021, 41(5): 697-703 doi: 10.11728/cjss2021.05.697
    [45] ARSLAN TARIQ M, LIU L B, SHAH M, et al. Longitudinal variations of ionospheric responses to the February and April 2023 geomagnetic storms over American and Asian sectors[J]. Advances in Space Research, 2024, 73(6): 3033-3049 doi: 10.1016/j.asr.2023.12.039
    [46] 熊年禄, 唐存琛, 李行健. 电离层物理概论[M]. 武汉: 武汉大学出版社, 1999

    XIONG Nianlu, TANG Cunchen, LI Xingjian. Introduction to Ionospheric Physics[M]. Wuhan: Wuhan University Press, 1999
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  397
  • HTML全文浏览量:  127
  • PDF下载量:  60
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2023-12-19
  • 修回日期:  2024-01-04
  • 网络出版日期:  2024-03-29

目录

    /

    返回文章
    返回