留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间引力波探测无拖曳卫星有限频域抗扰控制器设计

徐乾蛟 崔冰 王鹏程 夏元清 张永合

徐乾蛟, 崔冰, 王鹏程, 夏元清, 张永合. 空间引力波探测无拖曳卫星有限频域抗扰控制器设计[J]. 空间科学学报. doi: 10.11728/cjss2024.05.2024-0022
引用本文: 徐乾蛟, 崔冰, 王鹏程, 夏元清, 张永合. 空间引力波探测无拖曳卫星有限频域抗扰控制器设计[J]. 空间科学学报. doi: 10.11728/cjss2024.05.2024-0022
XU Qianjiao, CUI Bing, WANG Pengcheng, XIA Yuanqing, ZHANG Yonghe. Design of Finite Frequency Domain Disturbance Rejection Controller for the Drag-free Spacecraft in Space-borne Gravitational Wave Detection (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 903-916 doi: 10.11728/cjss2024.05.2024-0022
Citation: XU Qianjiao, CUI Bing, WANG Pengcheng, XIA Yuanqing, ZHANG Yonghe. Design of Finite Frequency Domain Disturbance Rejection Controller for the Drag-free Spacecraft in Space-borne Gravitational Wave Detection (in Chinese). Chinese Journal of Space Science, 2024, 44(5): 903-916 doi: 10.11728/cjss2024.05.2024-0022

空间引力波探测无拖曳卫星有限频域抗扰控制器设计

doi: 10.11728/cjss2024.05.2024-0022 cstr: 32142.14.cjss2024.05.2024-0022
基金项目: 国家重点研发计划项目资助(2021YFC2202600, 2021YFC2202601)
详细信息
    作者简介:
    • 徐乾蛟 男, 1994年11月出生于山东省德州市, 现为北京理工大学自动化学院在读博士研究生, 主要研究方向为频域控制、连续系统控制、引力波探测三星无拖曳控制等. E-mail: 3220215148@bit.edu.cn
    通讯作者:
    • 崔冰 男, 1990年1月出生于山东省冠县, 现为北京理工大学自动化学院副教授、博士生导师, 主要研究方向为多智能体协同控制、航天器姿态控制与姿态协同、引力波探测三星无拖曳控制等. E-mail: bing.cui@bit.edu.cn
  • 中图分类号: V448.2

Design of Finite Frequency Domain Disturbance Rejection Controller for the Drag-free Spacecraft in Space-borne Gravitational Wave Detection

  • 摘要: 在空间引力波探测任务中, 有限测量频域约束以及高精度控制指标使双参考质量无拖曳卫星控制器设计面临诸多技术难题. 基于此, 本文提出了一种基于广义Kalman-Yakubovich-Popov(GKYP)引理的有限频域抗扰控制器设计方法. 针对探测任务中指定频段内的性能约束, 结合灵敏度和补灵敏度控制指标, 在指定频段下构建了具有频率响应函数形式的有限频域控制性能指标. 提出了具有固定阶数特性的输出反馈控制结构, 并基于GKYP引理建立了控制器参数选取方法, 构建了有限频域抗扰控制器设计方法. 不同于现有的无拖曳控制器设计方法, 该设计方法可以有效降低控制指标的保守性, 同时在指定频段下实现了控制器的精确设计, 从而降低控制器阶数. 数值仿真表明, 本文所提方法在复杂扰动和噪声影响下可以满足无拖曳系统各回路控制性能指标.

     

  • 图  1  三星构型

    Figure  1.  Configuration of three spacecraft

    图  2  无拖曳卫星结构

    Figure  2.  Drag-free satellite structure

    图  3  无拖曳卫星参考坐标系

    Figure  3.  Reference coordinate system of the drag-free satellite

    图  4  控制系统各回路结构

    Figure  4.  Each loop structure of the control system

    图  5  控制系统回路结构

    Figure  5.  Structure of control system loop

    图  6  KG5控制性能

    Figure  6.  Control performance of KG5

    图  7  KG4控制性能

    Figure  7.  Control performance of KG4

    图  8  5阶控制器频域控制性能

    Figure  8.  Frequency domain control performance of the 5th order controllers

    图  9  无拖曳控制回路($ {x_1},{\text{ }}{z_1},{\text{ }}{x_2} $)位移误差PSD

    Figure  9.  PSD of displacement error in the drag-free control loop ($ {x_1},{\text{ }}{z_1},{\text{ }}{x_2} $)

    图  10  卫星姿态($ {\phi }_{\text{b}} $, $ {\psi }_{\text{b}}$, ${\theta _{\text{b}}}$)误差PSD

    Figure  10.  PSD of the satellite attitude (${\phi _{\text{b}}},{\text{ }}{\psi _{\text{b}}},{\text{ }}{\theta _{\text{b}}}$) error

    图  12  静电悬浮控制回路姿态误差PSD

    Figure  12.  PSD of attitude error in the suspension control loop

    图  13  静电悬浮控制回路位移控制PSD

    Figure  13.  PSD of displacement control in the suspension control loop

    图  14  静电悬浮控制回路姿态控制PSD

    Figure  14.  PSD of attitude control in the suspension control loop

    图  11  静电悬浮控制回路位移误差PSD

    Figure  11.  PSD of displacement error in the suspension control loop

    图  15  KG4控制器作用下无拖曳控制回路位移误差PSD

    Figure  15.  PSD of displacement error in the drag-free control loop under the action of KG4 controller

    图  16  KH5控制器作用下无拖曳控制回路位移误差PSD

    Figure  16.  PSD of displacement error in the drag-free control loop under the action of KH5 controller

    图  17  在5阶控制器作用下y1方向上位移误差PSD

    Figure  17.  PSD of displacement error in y1 direction under the action of the 5th order controllers

    图  18  x1方向上的5阶控制器控制输出PSD

    Figure  18.  PSD of control output of the 5th order controllers in the x1 direction

    图  19  z1方向上的5阶控制器控制输出PSD

    Figure  19.  PSD of control output of the 5th order controllers in the z1 direction

    图  20  y1方向上的5阶控制器控制输出PSD

    Figure  20.  PSD of control output of the 5th order controllers in the y1 direction

    图  21  y1方向上的5阶控制器控制输出曲线

    Figure  21.  Control output curve of the 5th order controllers in the y1 direction

    表  1  各自由度控制要求

    Table  1.   Control requirement for each degree of freedom

    控制回路 控制自由度 位姿误差要求/
    (m·rad·Hz–0.5)
    控制输入要求/
    (m·rad·s–2Hz–0.5)
    无拖曳控制回路 x1, x2, z1 $4 \times {10^{ - 9}}$
    静电悬浮
     控制回路
    y1, y2, z2 $2 \times {10^{ - 8}}$ $ 3 \times {10^{ - 13}} $
    $ {\phi _1}, $$ {\psi _1}, $$ {\theta _1} $
    $ {\phi _2}, $$ {\psi _2}, $$ {\theta _2} $
    $6 \times {10^{ - 7}}$ $2.5 \times {10^{ - 11}}$
    姿态控制回路 $ {\phi _{\text{b}}} $, $ {\psi _{\text{b}}} $, $ {\theta _{\text{b}}} $ $3 \times {10^{ - 9}}$
    下载: 导出CSV

    表  2  ${\boldsymbol{\varPsi}} $在不同频域条件下的取值

    Table  2.   Values of ${\boldsymbol{\varPsi}} $ under the different frequency domain conditions

    低频 中频 高频
    $w$ $ 0 \leqslant \left| w \right| \leqslant {w_{\text{l}}} $ ${w_1} \leqslant w \leqslant {w_2}$ $\left| w \right| \geqslant {w_{\text{h}}} \geqslant 0$
    ${\boldsymbol{\varPsi}} $ $\left[ {\begin{array}{*{20}{c}} { - 1}&0 \\ 0&{w_{\text{l}}^{\text{2}}} \end{array}} \right]$ $\left[ {\begin{array}{*{20}{c}} { - 1}&{j{w_{\text{c}}}} \\ { - j{w_{\text{c}}}}&{ - {w_1}{w_2}} \end{array}} \right]$ $\left[ {\begin{array}{*{20}{c}} 1&0 \\ 0&{ - w_{\text{h}}^2} \end{array}} \right]$
    下载: 导出CSV

    表  3  仿真参数

    Table  3.   Simulation parameters

    参数 取值
    卫星平台 质量/kg 350
    转动惯量/${\text{(kg}} \cdot {{\text{m}}^{\text{2}}})$ $\left[ {\begin{array}{*{20}{c}} {158.1}&{ - 8.626}&{0.8819} \\ { - 8.626}&{163.1}&{0.1913} \\ {0.8819}&{0.1913}&{297.1} \end{array}} \right]{\text{ }}$
    检测质量 质量/kg 1.96
    转动惯量/${\text{(kg}} \cdot {{\text{m}}^{\text{2}}})$ $\left[ {\begin{array}{*{20}{c}} {6.913}&0&0 \\ 0&{6.913}&0 \\ 0&0&{6.913} \end{array}} \right] \times {10^{ - 4}}$
    仿真时间/s ${10^5}$
    控制周期/s 0.1
    下载: 导出CSV
  • [1] 万小波, 张晓敏, 黎明. 天琴计划轨道构型长期漂移特性分析[J]. 中国空间科学技术, 2017, 37(3): 110-116

    WAN Xiaobo, ZHANG Xiaomin, LI Ming. Analysis of long-period drift characteristics for orbit configuration of the Tianqin mission[J]. Chinese Space Science and Technology, 2017, 37(3): 110-116
    [2] 吴岳良, 胡文瑞, 王建宇, 等. 空间引力波探测综述与拟解决的科学问题[J]. 空间科学学报, 2023, 43(4): 589-599 doi: 10.11728/cjss2023.04.yg08

    WU Yueliang, HU Wenrui, WANG Jianyu, et al. Review and scientific objectives of spaceborne gravitational wave detection missions[J]. Chinese Journal of Space Science, 2023, 43(4): 589-599 doi: 10.11728/cjss2023.04.yg08
    [3] BASILE F. Modeling and Design for the Attitude Control Phase of the LISA Drag-Free Mission[D]. Torino: Politecnico di Torino, 2019
    [4] LUO Z R, GUO Z K, JIN G, et al. A brief analysis to Taiji: science and technology[J]. Results in Physics, 2020, 16: 102918 doi: 10.1016/j.rinp.2019.102918
    [5] GONG Y G, LUO J, WANG B. Concepts and status of Chinese space gravitational wave detection projects[J]. Nature Astronomy, 2021, 5(9): 881-889 doi: 10.1038/s41550-021-01480-3
    [6] SWEETSER T H. An end-to-end trajectory description of the LISA mission[J]. Classical and Quantum Gravity, 2005, 22(10): S429-S435 doi: 10.1088/0264-9381/22/10/039
    [7] CIRILLO F. Controller Design for the Acquisition Phase of the LISA Mission Using a Kalman Filter[D]. Lungarno Antonio Pacinotti: Università di Pisa, 2007
    [8] 胡启阳, 陈君, 龙军, 等. 无拖曳卫星推力器动态模型研究[J]. 空间控制技术与应用, 2016, 42(1): 52-56 doi: 10.3969/j.issn.1674-1579.2016.01.010

    HU Qiyang, CHEN Jun, LONG Jun, et al. The dynamic model of thruster for drag-free satellite[J]. Aerospace Control and Application, 2016, 42(1): 52-56 doi: 10.3969/j.issn.1674-1579.2016.01.010
    [9] 胡明, 李洪银, 周泽兵. 无拖曳控制技术及其应用[J]. 载人航天, 2013, 19(2): 61-69 doi: 10.3969/j.issn.1674-5825.2013.02.010

    HU Ming, LI Hongyin, ZHOU Zebing. Drag-free control technology and its applications[J]. Manned Spaceflight, 2013, 19(2): 61-69 doi: 10.3969/j.issn.1674-5825.2013.02.010
    [10] DITTUS H, LÄMMERZAHL C, TURYSHEV S G. Lasers, Clocks and Drag-Free Control: Exploration of Relativistic Gravity in Space[M]. Berlin, Heidelberg: Springer, 2008
    [11] ZHOU J X, LIU L, WANG Z G. Modeling and analysis of ultra-low frequency dynamics of drag-free satellites[J]. Microgravity Science and Technology, 2019, 31(2): 151-160 doi: 10.1007/s12217-019-9672-7
    [12] WORDEN P W, EVERITT C W F. A testing ground for fundamental physics: gravity probe B and other fundamental physics experiments in space[J]. Nuclear Physics B-Proceedings Supplements, 2013, 243: 172-179
    [13] ROBERT A, CIPOLLA V, PRIEUR P, et al. MICROSCOPE satellite and its drag-free and attitude control system[J]. Classical and Quantum Gravity, 2022, 39(20): 204003 doi: 10.1088/1361-6382/ac09cd
    [14] 邹奎, 苟兴宇, 薛大同. 重力梯度测量卫星无拖曳控制技术[J]. 空间控制技术与应用, 2017, 43(02): 28-35 doi: 10.3969/j.issn.1674-1579.2017.02.005

    ZOU Kui, GOU Xingyu, XUE Datong. An overview on drag-free control for gravitational gradiometry satellites[J]. Aerospace Control and Application, 2017, 43(02): 28-35 doi: 10.3969/j.issn.1674-1579.2017.02.005
    [15] CANUTO E. Drag-free and attitude control for the GOCE satellite[J]. Automatica, 2008, 44(7): 1766-1780 doi: 10.1016/j.automatica.2007.11.023
    [16] LI H Y, BAI Y Z, HU M, et al. A novel controller design for the next generation space electrostatic accelerometer based on disturbance observation and rejection[J]. Sensors, 2016, 17(1): 21 doi: 10.3390/s17010021
    [17] ARMANO M, AUDLEY H, AUGER G, et al. Sub-femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results[J]. Physical Review Letters, 2016, 116(23): 231101 doi: 10.1103/PhysRevLett.116.231101
    [18] ARMANO M, AUDLEY H, BAIRD J, et al. Beyond the required LISA free-fall performance: new LISA pathfinder results down to 20 μHz[J]. Physical Review Letters, 2018, 120(6): 061101 doi: 10.1103/PhysRevLett.120.061101
    [19] FICHTER W, GATH P, VITALE S, et al. LISA pathfinder drag-free control and system implications[J]. Classical and Quantum Gravity, 2005, 22(10): S139 doi: 10.1088/0264-9381/22/10/002
    [20] WU S F, FERTIN D. Spacecraft drag-free attitude control system design with quantitative feedback theory[J]. Acta Astronautica, 2008, 62(12): 668-682 doi: 10.1016/j.actaastro.2008.01.038
    [21] GATH P, SCHULTE H R, WEISE D, et al. Drag free and attitude control system design for the LISA science mode[C]//Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit. Hilton Head: AIAA, 2007: 6731
    [22] LUPI F. Precise Control of LISA with Quantitative Feedback Theory[D]. Delft: Delft University of Technology, 2019
    [23] 叶建成, 周斌, 张艺腾, 等. 航天器内部磁场环境主动补偿方法[J]. 空间科学学报, 2020, 40(1): 93-101 doi: 10.11728/cjss2020.01.093

    YE Jiancheng, ZHOU Bin, ZHANG Yiteng, et al. Active compensation method of spacecraft internal magnetic field environment[J]. Chinese Journal of Space Science, 2020, 40(1): 93-101 doi: 10.11728/cjss2020.01.093
    [24] 李卓, 郑建华, 李明涛, 等. 太阳系天体引力对空间引力波探测日心编队构型的影响分析[J]. 空间科学学报, 2021, 41(3): 457-466 doi: 10.11728/cjss2021.03.457

    LI Zhuo, ZHENG Jianhua, LI Mingtao, et al. Analysis of celestial gravity influence on heliocentric formation flying of gravitational wave observatory[J]. Chinese Journal of Space Science, 2021, 41(3): 457-466 doi: 10.11728/cjss2021.03.457
    [25] LIAN X B, ZHANG J X, LU L, et al. Frequency separation control for drag-free satellite with frequency-domain constraints[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(6): 4085-4096 doi: 10.1109/TAES.2021.3088456
    [26] 范一迪, 王鹏程, 卢苇, 等. 双检验质量无拖曳卫星鲁棒控制[J]. 深空探测学报(中英文), 2023, 10(03): 310-321

    FAN Yidi, WANG Pengcheng, LU Wei, et al. Robust controller design for drag-free satellites with two test masses[J]. Journal of Deep Space Exploration, 2023, 10(03): 310-321
    [27] XIAO C Y, CANUTO E, HONG W, et al. Drag-free design based on embedded model control for TianQin project[J]. Acta Astronautica, 2022, 198: 482-494 doi: 10.1016/j.actaastro.2022.06.031
    [28] MA H J, ZHENG J H, HAN P, et al. Robust composite control design of drag-free satellite with Kalman filter-based extended state observer for disturbance reduction[J]. Advances in Space Research, 2022, 70(10): 3034-3050 doi: 10.1016/j.asr.2022.07.048
    [29] 章楚, 贺建武, 段俐. 基于扩张状态观测器的无拖曳系统参数辨识[J]. 空间科学学报, 2019, 39(5): 670-676 doi: 10.11728/cjss2019.05.670

    ZHANG Chu, HE Jianwu, DUAN Li. Parameter identification of drag-free system based on extended state observer[J]. Chinese Journal of Space Science, 2019, 39(5): 670-676 doi: 10.11728/cjss2019.05.670
    [30] The Taiji Scientific Collaboration. China’s first step towards probing the expanding universe and the nature of gravity using a space borne gravitational wave antenna[J]. Communications Physics, 2021, 4(1): 34 doi: 10.1038/s42005-021-00529-z
    [31] HU Z Q, WANG P C, DENG J F, et al. The drag-free control design and in-orbit experimental results of “Taiji-1”[J]. International Journal of Modern Physics A, 2021, 36(11/12): 2140019
    [32] LUO J, BAI Y Z, CAI L, et al. The first round result from the TianQin-1 satellite[J]. Classical and Quantum Gravity, 2020, 37(18): 185013 doi: 10.1088/1361-6382/aba66a
    [33] XIAO C Y, BAI Y Z, LI H Y, et al. Drag-free control design and in-orbit validation of TianQin-1 satellite[J]. Classical and Quantum Gravity, 2022, 39(15): 155001 doi: 10.1088/1361-6382/ac79f5
    [34] IWASAKI T, HARA S. Generalized KYP lemma: unified frequency domain inequalities with design applications[J]. IEEE Transactions on Automatic Control, 2005, 50(1): 41-59 doi: 10.1109/TAC.2004.840475
    [35] DUN A, XU Q J, LEI F. Finite frequency domain H consensus control of neutral multi-agent systems with input delay[J]. International Journal of Systems Science, 2023, 54(1): 136-152 doi: 10.1080/00207721.2022.2111234
    [36] TAKAKU Y, NAGASHIO Y, KIDA T. An optimal h-infinity design using GKYP lemma for DVDFB controller and its application to flexible spacecraft[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2012, 10(28): Pd_53-Pd_60
    [37] ZHANG Y Z, LIU M C, ZHANG C Z. Robust fault‐tolerant H output feedback control of active suspension and dynamic vibration absorber with finite‐frequency constraint[J]. IET Intelligent Transport Systems, 2020, 14(14): 1935-1945 doi: 10.1049/iet-its.2020.0364
    [38] ZHANG J X, LU L, LIAN X B, et al. GKYP-based finite frequency control for relative motion of drag-free satellite[J]. Journal of Aerospace Engineering, 2023, 36(4): 04023031 doi: 10.1061/JAEEEZ.ASENG-4524
    [39] VIDANO S, NOVARA C, COLANGELO L, et al. The LISA DFACS: a nonlinear model for the spacecraft dynamics[J]. Aerospace Science and Technology, 2020, 107: 106313 doi: 10.1016/j.ast.2020.106313
    [40] GATH P, FICHTER W, KERSTEN M, et al. Drag free and attitude control system design for the LISA pathfinder mission[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit. Providence: AIAA, 2004: 5430
    [41] HENRION D, SEBEK M, KUCERA V. Positive polynomials and robust stabilization with fixed-order controllers[J]. IEEE Transactions on Automatic Control, 2003, 48(7): 1178-1186 doi: 10.1109/TAC.2003.814103
    [42] SAFONOV M G, CHIANG R Y, LIMEBEER D J. N. Optimal Hankel model reduction for nonminimal systems[J]. IEEE Transactions on Automatic Control, 1990, 35(4): 496-502 doi: 10.1109/9.52314
  • 加载中
图(21) / 表(3)
计量
  • 文章访问数:  558
  • HTML全文浏览量:  151
  • PDF下载量:  58
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-02-17
  • 修回日期:  2024-04-16
  • 网络出版日期:  2024-05-27

目录

    /

    返回文章
    返回