留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双层气辉观测的特殊传播方向电离层行进式扰动事件

周尘砂 赖昌 徐寄遥 吴坤 袁韦

周尘砂, 赖昌, 徐寄遥, 吴坤, 袁韦. 基于双层气辉观测的特殊传播方向电离层行进式扰动事件[J]. 空间科学学报, 2024, 44(6): 1047-1055. doi: 10.11728/cjss2024.06.2024-0006
引用本文: 周尘砂, 赖昌, 徐寄遥, 吴坤, 袁韦. 基于双层气辉观测的特殊传播方向电离层行进式扰动事件[J]. 空间科学学报, 2024, 44(6): 1047-1055. doi: 10.11728/cjss2024.06.2024-0006
ZHOU Chensha, LAI Chang, XU Jiyao, WU Kun, YUAN Wei. Traveling Ionospheric Disturbance Events with Special Propagation Direction Based on Double-layer Airglow Observation (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 1047-1055 doi: 10.11728/cjss2024.06.2024-0006
Citation: ZHOU Chensha, LAI Chang, XU Jiyao, WU Kun, YUAN Wei. Traveling Ionospheric Disturbance Events with Special Propagation Direction Based on Double-layer Airglow Observation (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 1047-1055 doi: 10.11728/cjss2024.06.2024-0006

基于双层气辉观测的特殊传播方向电离层行进式扰动事件

doi: 10.11728/cjss2024.06.2024-0006 cstr: 32142.14.cjss.2024-0006
基金项目: 中国科学技术协会青年人才托举项目(2021QNRC001)和空间天气学国家重点实验室开放项目共同资助
详细信息
    作者简介:
    • 周尘砂 男, 1997年8月出生于重庆市南川区, 现为重庆邮电大学理学院硕士研究生, 物理学专业. E-mail: s210601020@stu.cqupt.edu.cn
    通讯作者:
    • 赖昌 男, 1980年1月出生于四川省内江市, 现为重庆邮电大学理学院教授, 研究生导师, 主要研究方向为中高层大气波动、气辉图像智能识别等. E-mail: laichang@cqupt.edu.cn
  • 中图分类号: P352

Traveling Ionospheric Disturbance Events with Special Propagation Direction Based on Double-layer Airglow Observation

  • 摘要: 2011-2021年, 位于中国河北省兴隆县的子午工程兴隆台站(40.4°N, 117.6°E, 30.5°MLAT)的全天空气辉成像仪记录了611次中尺度电离层行进式扰动(Medium-scale Traveling Ionospheric Disturbance, MSTID)事件, 其中589次是典型的西南向传播, 22次是非西南向传播. 为了更好地理解这些非典型传播方向的MSTID事件, 采用地基协同观测的OI 630 nm和OH近红外波段气辉图像对比MSTID和大气重力波(Atmospheric Gravity Wave, AGW)传播参数、射线追踪和风场数据, 探讨了非西南传播的典型MSTID事件的形成机制. 结果表明, 当MSTID和AGW传播方向相近时, 上游AGW激发的Perkins不稳定性可能是形成这类MSTID的机制, 解释了东北方向和部分西北方向传播的事件; 在黄昏时分, 中性风场向东, AGW破碎后的波动经过中性风的过滤, 导致西向传播的MSTID事件; 孤波MSTID不具有周期性结构, 可能源自E-F耦合激发.

     

  • 图  1  同时观测到的东北向MSTID (a)与AGW (b)气辉. 红色虚线为波面

    Figure  1.  Simultaneously observed northeastward MSTID (a) and AGW (b). The wave forms are marked by red dashes

    图  2  反向射线追踪结果. (a)红色五角星表示兴隆台站, 红色实线表示OI气辉观测的MSTID反向射线追踪路径, 红色线条的末端是追踪结果位置, 黑色和绿色线条分别表示MSTID和AGW的波面

    Figure  2.  Backward ray tracing results. In (a), the red pentagram represents the Xinglong Station, and the red lines depict the backward ray tracing paths of MSTID observed in OI airglow. The end points of the red lines indicate the traced positions. The black and green lines respectively represent the wave fronts of MSTID and AGW

    图  3  东北向MSTID事件波长和传播速度统计

    Figure  3.  Statistics of northeast MSTID event wavelength and propagation velocity

    图  4  西北向的MSTID (a)与西南向的AGW (b). 红色虚线为波面

    Figure  4.  Northwestward MSTID (a) and southwestward AGW (b) observed simultaneously. The wave forms are marked by red dashes

    图  5  孤波MSTID (a)与下方OH气辉中的AGW (b). 红色虚线为波面. (a)对角线上的 暗色条纹是西南向传播的孤波MSTID

    Figure  5.  Solitary MSTID (a) and AGW in OH airglow below (b). The wave forms are marked by red dashes. The dark stripe in subgraph (a) is a solitary MSTID propagating southwest

    表  1  东北向MSTID与AGW事件参数

    Table  1.   Parameters of the northeast MSTID and AGW

    波动类型传播速度/(m·s–1)波长/km周期/s相对强度传播方位/(°)
    MSTID150±11200.7±0.31335±110.4057±5
    AGW59±255.6±0.6941±370.2455±3
    下载: 导出CSV

    表  2  西北向MSTID与西南向AGW事件参数

    Table  2.   Northwest MSTID and southwest AGW event parameters

    波动类型传播速度/(m·s–1)波长/km周期/s相对强度传播方位/(°)
    MSTID195±26162.5±2.2836±120.27333±7
    AGW55±335.0±0.6635±370.22112±1
    下载: 导出CSV

    表  3  孤波MSTID与AGW事件参数

    Table  3.   Solitary MSTID and AGW event parameters

    波动类型 传播速度/(m·s–1) 波长/km 周期/s 相对强度 传播方向/(°)
    MSTID 212±9 0.37 144±11
    AGW 44±4 21.7±0.6 498±37 0.14 76±2
    下载: 导出CSV
  • [1] 潘建宏, 蔡红涛, 谷骏, 等. 赤道附近局地激发LS-TAD的事例观测[J]. 地球物理学报, 2022, 65(3): 853-861 doi: 10.6038/cjg2022P0181

    PAN Jianhong, CAI Hongtao, GU Jun, et al. A case study of large-scale travelling atmospheric disturbances driven by equatorial local source[J]. Chinese Journal of Geophysics, 2022, 65(3): 853-861 doi: 10.6038/cjg2022P0181
    [2] MILLER C A, SWARTZ W E, KELLEY M C, et al. Electrodynamics of midlatitude spread F: 1. Observations of unstable, gravity wave‐induced ionospheric electric fields at tropical latitudes[J]. Journal of Geophysical Research: Space Physics, 1997, 102(A6): 11521-11532 doi: 10.1029/96JA03839
    [3] 姚宜斌, 高鑫. GNSS电离层监测研究进展与展望[J]. 武汉大学学报·信息科学版, 2022, 47(10): 1728-1739

    YAO Yibin, GAO Xin. Research progress and prospect of monitoring ionosphere by GNSS technique[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1728-1739
    [4] RAJESH P K, LIU J Y, LIN C H, et al. Space‐based imaging of nighttime medium‐scale traveling ionospheric disturbances using FORMOSAT‐2/ISUAL 630.0 nm airglow observations[J]. Journal of Geophysical Research: Space Physics, 2016, 121(5): 4769-4781 doi: 10.1002/2015JA022334
    [5] MARTINIS C, BAUMGARDNER J, WROTEN J, et al. All‐sky imaging observations of conjugate medium‐scale traveling ionospheric disturbances in the American sector[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A5): A05326
    [6] GARCIA F J, KELLEY M C, MAKELA J J, et al. Airglow observations of mesoscale low‐velocity traveling ionospheric disturbances at midlatitudes[J]. Journal of Geophysical Research: Space Physics, 2000, 105(A8): 18407-18415 doi: 10.1029/1999JA000305
    [7] SHIOKAWA K, IHARA C, OTSUKA Y, et al. Statistical study of nighttime medium‐scale traveling ionospheric disturbances using midlatitude airglow images[J]. Journal of Geophysical Research: Space Physics, 2003, 108(A1): 1052
    [8] LAI C, XU J Y, LIN Z S, et al. Statistical characteristics of nighttime medium‐scale traveling ionospheric disturbances from 10‐years of airglow observation by the machine learning method[J]. Space Weather, 2023, 21(5): e2023SW003430 doi: 10.1029/2023SW003430
    [9] PERKINS F. Spread F and ionospheric currents[J]. Journal of Geophysical Research, 1973, 78(1): 218-226 doi: 10.1029/JA078i001p00218
    [10] YOKOYAMA T, OTSUKA Y, OGAWA T, et al. First three‐dimensional simulation of the Perkins instability in the nighttime midlatitude ionosphere[J]. Geophysical Research Letters, 2008, 35(3): L03101
    [11] KELLEY M C, MAKELA J J. Resolution of the discrepancy between experiment and theory of midlatitude F‐region structures[J]. Geophysical Research Letters, 2001, 28(13): 2589-2592 doi: 10.1029/2000GL012777
    [12] COSGROVE R B, TSUNODA R T. Instability of the E‐F coupled nighttime midlatitude ionosphere[J]. Journal of Geophysical Research: Space Physics, 2004, 109(A4): A04305
    [13] KELLEY M C. In situ ionospheric observations of severe weather‐related gravity waves and associated small‐scale plasma structure[J]. Journal of Geophysical Research: Space Physics, 1997, 102(A1): 329-335 doi: 10.1029/96JA03033
    [14] OTSUKA Y, KOTAKE N, SHIOKAWA K, et al. Statistical study of medium-scale traveling ionospheric disturbances observed with a GPS receiver network in Japan[M]//ABDU M A, PANCHEVA D. Aeronomy of the Earth's Atmosphere and Ionosphere. Dordrecht: Springer, 2011: 291-299
    [15] FIGUEIREDO C A O B, TAKAHASHI H, WRASSE C M, et al. Investigation of nighttime MSTIDS observed by optical thermosphere imagers at low latitudes: morphology, propagation direction, and wind filtering[J]. Journal of Geophysical Research: Space Physics, 2018, 123(9): 7843-7857 doi: 10.1029/2018JA025438
    [16] Katamzi‐JOSEPH Z T, GRAWE M A, MAKELA J J, et al. First results on characteristics of nighttime MSTIDs observed over South Africa: Influence of thermospheric wind and sporadic E[J]. Journal of Geophysical Research: Space Physics, 2022, 127(11): e2022JA030375 doi: 10.1029/2022JA030375
    [17] WU K, XU J Y, WANG W B, et al. Interaction of oppositely traveling medium‐scale traveling ionospheric disturbances observed in low latitudes during geomagnetically quiet nighttime[J]. Journal of Geophysical Research: Space Physics, 2021, 126(2): e2020JA028723 doi: 10.1029/2020JA028723
    [18] XU J Y, LI Q Z, YUE J, et al. Concentric gravity waves over northern China observed by an airglow imager network and satellites[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(21): 11058-11078
    [19] SUN L C, XU J Y, ZHU Y J, et al. Case study of an Equatorial Plasma Bubble Event investigated by multiple ground‐based instruments at low latitudes over China[J]. Earth and Planetary Physics, 2021, 5(5): 435-449
    [20] LAI C, YUE J, XU J Y, et al. Detection of large-scale concentric gravity waves from a Chinese airglow imager network[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2018, 171: 269-276 doi: 10.1016/j.jastp.2017.10.002
    [21] SUN L C, XU J Y, WANG W B, et al. Mesoscale field‐aligned irregularity structures (FAIs) of airglow associated with medium‐scale traveling ionospheric disturbances (MSTIDs)[J]. Journal of Geophysical Research: Space Physics, 2015, 120(11): 9839-9858 doi: 10.1002/2014JA020944
    [22] JONES W L. Ray tracing for internal gravity waves[J]. Journal of Geophysical Research, 1969, 74(8): 2028-2033 doi: 10.1029/JB074i008p02028
    [23] RIENECKER M M, SUAREZ M J, GELARO R, et al. MERRA: NASA’s modern-era retrospective analysis for research and applications[J]. Journal of Climate, 2011, 24(14): 3624-3648 doi: 10.1175/JCLI-D-11-00015.1
    [24] HEDIN A E, FLEMING E L, MANSON A H, et al. Empirical wind model for the upper, middle and lower atmosphere[J]. Journal of Atmospheric and Terrestrial Physics, 1996, 58(13): 1421-1447 doi: 10.1016/0021-9169(95)00122-0
    [25] DROB D P, EMMERT J T, CROWLEY G, et al. An empirical model of the Earth’s horizontal wind fields: HWM07[J]. Journal of Geophysical Research: Space Physics, 2008, 113(A12): A12304
    [26] TANG Q, ZHOU Y F, DU Z T, et al. A comparison of meteor radar observation over China region with horizontal wind model (HWM14)[J]. Atmosphere, 2021, 12(1): 98 doi: 10.3390/atmos12010098
    [27] LI Q Z, XU J Y, LIU X, et al. Characteristics of mesospheric gravity waves over the southeastern Tibetan Plateau region[J]. Journal of Geophysical Research: Space Physics, 2016, 121(9): 9204-9221 doi: 10.1002/2016JA022823
    [28] COWLING D H, WEBB H D, YEH K C. Group rays of internal gravity waves in a wind‐stratified atmosphere[J]. Journal of Geophysical Research, 1971, 76(1): 213-220 doi: 10.1029/JA076i001p00213
    [29] WALDOCK J A, JONES T B. The effects of neutral winds on the propagation of medium-scale atmospheric gravity waves at mid-latitudes[J]. Journal of Atmospheric and Terrestrial Physics, 1984, 46(3): 217-231 doi: 10.1016/0021-9169(84)90149-1
    [30] OTSUKA Y, ONOMA F, SHIOKAWA K, et al. Simultaneous observations of nighttime medium‐scale traveling ionospheric disturbances and E region field‐aligned irregularities at midlatitude[J]. Journal of Geophysical Research: Space Physics, 2007, 112(A6): A06317
    [31] TSUNODA R T. On the coupling of layer instabilities in the nighttime midlatitude ionosphere[J]. Journal of Geophysical Research: Space Physics, 2006, 111(A11): A11304
    [32] HALDOUPIS C, SCHLEGEL K, FARLEY D T. An explanation for type 1 radar echoes from the midlatitude E‐region ionosphere[J]. Geophysical Research Letters, 1996, 23(1): 97-100 doi: 10.1029/95GL03585
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  422
  • HTML全文浏览量:  103
  • PDF下载量:  50
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-01-08
  • 修回日期:  2024-03-31
  • 网络出版日期:  2024-05-08

目录

    /

    返回文章
    返回