留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于GBR方法的Kp指数预报模型

焦琦融 张典钧 刘文龙

焦琦融, 张典钧, 刘文龙. 基于GBR方法的Kp指数预报模型[J]. 空间科学学报, 2024, 44(6): 1012-1020. doi: 10.11728/cjss2024.06.2024-0011
引用本文: 焦琦融, 张典钧, 刘文龙. 基于GBR方法的Kp指数预报模型[J]. 空间科学学报, 2024, 44(6): 1012-1020. doi: 10.11728/cjss2024.06.2024-0011
JIAO Qirong, ZHANG Dianjun, LIU Wenlong. Kp Index Forecast Model Based on GBR Method (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 1012-1020 doi: 10.11728/cjss2024.06.2024-0011
Citation: JIAO Qirong, ZHANG Dianjun, LIU Wenlong. Kp Index Forecast Model Based on GBR Method (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 1012-1020 doi: 10.11728/cjss2024.06.2024-0011

基于GBR方法的Kp指数预报模型

doi: 10.11728/cjss2024.06.2024-0011 cstr: 32142.14.cjss.2024-0011
基金项目: 国家自然科学基金项目资助(42304175, 41974194)
详细信息
    作者简介:
    • 焦琦融 女, 1993年10月出生于内蒙古呼和浩特, 现为北京航空航天大学博士研究生, 主要研究方向为太阳物理过程、空间天气预报等. E-mail: JiaoQirong@buaa.edu.cn
    通讯作者:
    • 张典钧 男, 1994年10月出生于北京市西城区, 现为北京航空航天大学讲师, 主要研究方向为空间物理、内磁层动力学等. E-mail: diandian@buaa.edu.cn
  • 中图分类号: P353

Kp Index Forecast Model Based on GBR Method

  • 摘要: 地磁Kp指数是空间天气预警的重要指标, 也是研究太阳风–磁层耦合的关键参数. 采用梯度提升回归(GBR)算法和随机森林(RF)两种机器学习方法, 构建了以太阳风、行星际磁场参数、历史Kp值和太阳黑子数据为输入的3 h 地磁 Kp指数预报模型. 预报结果表明, 两种方法均可提前1 h预报地磁Kp指数, 预测结果与观测值之间的相关系数为0.90, 其中GBR方法在均方根误差上表现出更好的效果, 均方根误差为0.56. Kp指数预报模型在太阳活动周不同相位的预测结果存在差异, 在活动周下降阶段模型预测结果与观测数据的相关系数更高. 比较了不同地磁扰动下模型的预测情况, 相比中等磁暴和超强磁暴, 模型对强磁暴(6≤Kp<7)的预报准确度最高.

     

  • 图  1  参数评分

    Figure  1.  Parameter scoring results

    图  2  观测Kp值与GBR3和RF3模型的预测Kp值对比(红色虚线表示对角线, 蓝色虚线表示线性拟合直线相关系数为0.90)

    Figure  2.  Kp observations and predictions, with observed Kp values on the horizontal axis and predicted values on the vertical axis (The red dashed line represents the diagonal line, and the blue dashed line represents the linear fit result of the scatter, with a correlation coefficient of 0.90)

    图  3  第24太阳活动周相位划分

    Figure  3.  Phase division of the 24th solar activity cycle

    表  1  输入参数和3 h 地磁 Kp指数预测模型结果 (提前1 h)

    Table  1.   Data set variables and comparison of the prediction model results of 3-hour Kp index (predict 1 h)

    模型名称 输入参数 C P Erms
    GBR1 vsw, Psw, Nsw, Bz, B, E 0.89 0.79 0.58
    RF1 0.87 0.75 0.65
    GBR2 vsw, Psw, Nsw, Bz, B, E, Kpt–3 0.90 0.81 0.56
    RF2 0.89 0.79 0.59
    GBR3 vw, Psw, Nsw, Bz, B, E, Kpt–3, Aall 0.90 0.81 0.56
    RF3 0.90 0.80 0.58
      Kpt–3 表示3 h 前Kp 指数.
    下载: 导出CSV

    表  2  3 h地磁 Kp指数GBR预测模型与现有模型结果对比

    Table  2.   Comparison of the GBR prediction model of 3-hour Kp index with the existing models

    文献 输入参数 提前时间/h C Erms
    [7] vsw, Bz, B 1 0.75
    [32] vsw, Nsw, Bz 3 0.77 0.99
    [9] Boyle index, Kp 1 0.86 0.71
    [4] 9个地磁台站Kp估计值 0 0.94 0.50
    GBR3 vsw, Psw, Nsw, Bz, B, E, Kpt–3, Aall 1 0.90 0.56
    下载: 导出CSV

    表  3  3 h模型在太阳活动周不同相位的预测结果相关系数

    Table  3.   Correlation coefficient during different solar cycle phase of the 3-hour prediction model

    GBR1RF1GBR2RF2GBR3RF3
    上升阶段0.890.880.890.880.890.88
    极大期0.880.870.890.880.890.88
    下降阶段0.890.890.900.890.900.90
    下载: 导出CSV

    表  4  不同地磁扰动情况下3 h地磁 Kp 指数预测结果

    Table  4.   Comparison of the prediction results of 3-hour Kp index under different geomagnetic disturbance

    数据总数 预测次数 准确比例/(%)
    5≤Kp<6 413 106 26
    6≤Kp<7 104 36 35
    Kp≥7 24 6 24
    下载: 导出CSV
  • [1] CAO J B, DUAN J T, DU A M, et al. Characteristics of middle- to low-latitude Pi2 excited by bursty bulk flows[J]. Journal of Geophysical Research: Space Physics, 2008, 113(A7): A07S15
    [2] CAO J B, YAN C X, DUNLOP M, et al. Geomagnetic signatures of current wedge produced by fast flows in a plasma sheet[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A8): A08205
    [3] . BARTELS J. The standardized index, Ks, and the planetary index Kp[J]. IATME Bull 12b, IUGG Publ Office, Paris 1949 : 97–112; reprinted in: IAGA Bull 12i, IUGG Publ Office, Paris 1955: 88–101
    [4] TAKAHASHI K, TOTH B A, OLSON J V. An automated procedure for near-real-time Kp estimates[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A10): 21017-21032 doi: 10.1029/2000JA000218
    [5] LUO B, LIU S, GONG J. Two empirical models for short-term forecast of Kp[J]. Space Weather, 2017, 15(3): 503-516 doi: 10.1002/2016SW001585
    [6] COSTELLO K A. Moving the Rice MSFM into A Real-Time Forecast Mode Using Solar Wind Driven Forecast Modules[D]. Houston: Rice University, 1998
    [7] BALA R, REIFF P. Improvements in short-term forecasting of geomagnetic activity[J]. Space Weather, 2012, 10(6): S06001
    [8] BALA R, REIFF P H, LANDIVAR J E. Real-time prediction of magnetospheric activity using the Boyle Index[J]. Space Weather, 2009, 7(4): S04003
    [9] AYALA SOLARES J R, WEI H L, BOYNTON R J, et al. Modeling and prediction of global magnetic disturbance in near-earth space: a case study for Kp index using NARX models[J]. Space Weather, 2016, 14(10): 899-916 doi: 10.1002/2016SW001463
    [10] WING S, JOHNSON J R, JEN J, et al. Kp forecast models[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A4): A04203
    [11] TAN Y, HU Q H, WANG Z, et al. Geomagnetic index Kp forecasting with LSTM[J]. Space Weather, 2018, 16(4): 406-416 doi: 10.1002/2017SW001764
    [12] WANG J J, ZHONG Q Z, LIU S Q, et al. Statistical analysis and verification of 3-hourly geomagnetic activity probability predictions[J]. Space Weather, 2015, 13(12): 831-852 doi: 10.1002/2015SW001251
    [13] 刘杨, 罗冰显, 刘四清, 等. 基于神经网络方法的Kp预报模型[J]. 载人航天, 2013, 19(2): 70-80 doi: 10.3969/j.issn.1674-5825.2013.02.011

    LIU Yang, LUO Bingxian, LIU Siqing, et al. Kp forecast models based on neural networks[J]. Manned Spaceflight, 2013, 19(2): 70-80 doi: 10.3969/j.issn.1674-5825.2013.02.011
    [14] JOHNSON J R, WING S. A solar cycle dependence of nonlinearity in magnetospheric activity[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A4): A04211
    [15] LE G M, CAI Z Y, WANG H N, et al. Solar cycle distribution of great geomagnetic storms[J]. Astrophysics and Space Science, 2012, 339(1): 151-156 doi: 10.1007/s10509-011-0960-y
    [16] PERREAULT P, AKASOFU S I. A study of geomagnetic storms[J]. Geophysical Journal International, 1978, 54(2): 547-573
    [17] KAN J R, LEE L C. Energy coupling function and solar wind-magnetosphere dynamo[J]. Geophysical Research Letters, 1979, 6(7): 577-580 doi: 10.1029/GL006i007p00577
    [18] THOMSEN M F. Why Kp is such a good measure of magnetospheric convection[J]. Space Weather, 2004, 2(11): S11004
    [19] BARGATZE L F, BAKER D N, MCPHERRON R L, et al. Magnetospheric impulse response for many levels of geomagnetic activity[J]. Journal of Geophysical Research: Space Physics, 1985, 90(A7): 6387-6394 doi: 10.1029/JA090iA07p06387
    [20] 徐文耀. 太阳风–磁层–电离层耦合过程中的能量收支[J]. 空间科学学报, 2011, 31(1): 1-14 doi: 10.11728/cjss2011.01.001

    XU Wenyao. Energy budget in the coupling processes of the solar wind, magnetosphere and ionosphere[J]. Chinese Journal of Space Science, 2011, 31(1): 1-14 doi: 10.11728/cjss2011.01.001
    [21] JIAO Q R, LIU W L, ZHANG D J, et al. Relation between latitude-dependent sunspot data and near-earth solar wind speed[J]. The Astrophysical Journal, 2023, 958(1): 70 doi: 10.3847/1538-4357/acfc21
    [22] KING J H, PAPITASHVILI N E. Solar wind spatial scales in and comparisons of hourly wind and ACE plasma and magnetic field data[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A2): A02104
    [23] WOLF W. Abstract of his latest Results[J]. Monthly Notices of the Royal Astronomical Society, 1861, 21(3): 77-78 doi: 10.1093/mnras/21.3.77
    [24] BIAU G, CADRE B, ROUVIÈRE L. Accelerated gradient boosting[J]. Machine Learning, 2019, 108(6): 971-992 doi: 10.1007/s10994-019-05787-1
    [25] FRIEDMAN J H. Greedy function approximation: a gradient boosting machine[J]. The Annals of Statistics, 2001, 29(5): 1189-1232 doi: 10.1214/aos/1013203450
    [26] NATEKIN A, KNOLL A. Gradient boosting machines, a tutorial[J]. Frontiers in Neurorobotics, 2013, 7: 21
    [27] BREIMAN L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32 doi: 10.1023/A:1010933404324
    [28] HE J S, MARSCH E, TU C Y, et al. Intermittent outflows at the edge of an active region: a possible source of the solar wind[J]. Astronomy & Astrophysics, 2010, 516: A14 doi: 10.1051/0004-6361/200913712
    [29] KOJIMA M, FUJIKI K, OHMI T, et al. Low-speed solar wind from the vicinity of solar active regions[J]. Journal of Geophysical Research: Space Physics, 1999, 104(A8): 16993-17003 doi: 10.1029/1999ja900177
    [30] ZANGRILLI L, POLETTO G. Evolution of active region outflows throughout an active region lifetime[J]. Astronomy & Astrophysics, 2016, 594: A40 doi: 10.1051/0004-6361/201628421
    [31] FU H, LI B, LI X, et al. Coronal sources and in situ properties of the solar winds sampled by ACE during 1999-2008[J]. Solar Physics, 2015, 290(5): 1399-1415 doi: 10.1007/s11207-015-0689-9
    [32] . BOBERG F, WINTOFT P, LUNDSTEDT H. Real time Kp predictions from solar wind data using neural networks[J]. Physics and Chemistry of the Earth, Part C: Solar, Terrestrial & Planetary Science, 2000, 25 (4): 275-280
    [33] BERGIN A, CHAPMAN S C, MOLONEY N R, et al. Variation of geomagnetic index empirical distribution and burst statistics across successive solar cycles[J]. Journal of Geophysical Research: Space Physics, 2022, 127(1): e2021JA029986 doi: 10.1029/2021JA029986
    [34] 张典钧, 刘文龙, 杜俊峰, 等. 行星际激波导致内磁层脉冲电场的模拟研究[J]. 地球物理学报, 2023, 66(11): 4429-4436 doi: 10.6038/cjg2022Q0701

    ZHANG Dianjun, LIU Wenlong, DU Junfeng, et al. Simulation study on the Impulsive Electric Field induced by an interplanetary shock[J]. Chinese Journal of Geophysics, 2023, 66(11): 4429-4436 doi: 10.6038/cjg2022Q0701
    [35] SEXTON E S, NYKYRI K, MA X Y. Kp forecasting with a recurrent neural network[J]. Journal of Space Weather and Space Climate, 2019, 9: A19 doi: 10.1051/swsc/2019020
    [36] 王子思禹, 师立勤, 刘四清, 等. 基于机器学习相似度算法的Kp指数预报[J]. 空间科学学报, 2022, 42(2): 199-205. DOI: 10.11728/cjss2022.02.210316030

    WANG Zisiyu, SHI Liqin, LIU Siqing, et al. Kp index prediction based on similarity algorithm of machine learning[J]. Chinese Journal of Space Science, 2022, 42(2): 199-205. DOI: 10.11728/cjss2022.02.210316030
    [37] GONZALEZ W D, GONZALEZ A L C, TSURUTANI B T. Dual-peak solar cycle distribution of intense geomagnetic storms[J]. Planetary and Space Science, 1990, 38(2): 181-187 doi: 10.1016/0032-0633(90)90082-2
    [38] CROOKER N U, GRINGAUZ K I. On the low correlation between long-term averages of solar wind speed and geomagnetic activity after 1976[J]. Journal of Geophysical Research: Space Physics, 1993, 98(A1): 59-62 doi: 10.1029/92JA01978
    [39] PAPITASHVILI V O, PAPITASHVILI N E, KING J H. Solar cycle effects in planetary geomagnetic activity: analysis of 36-year long OMNI dataset[J]. Geophysical Research Letters, 2000, 27(17): 2797-2800 doi: 10.1029/2000GL000064
    [40] GARRETT H B, DESSLER A J, HILL T W. Influence of solar wind variability on geomagnetic activity[J]. Journal of Geophysical Research, 1974, 79(31): 4603-4610 doi: 10.1029/JA079i031p04603
    [41] LIU W, SARRIS T E, LI X, et al. Solar wind influence on Pc4 and Pc5 ULF wave activity in the inner magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A12): A12201
    [42] MAYAUD P N. Derivation, Meaning, and Use of Geomagnetic Indices[M]. Washington: American Geophysical Union, 1980
    [43] ZHANG D J, LIU W L, DU J F, et al. Response of electric field in terrestrial magnetosphere to interplanetary shock[J]. The Astrophysical Journal, 2022, 938(1): 70 doi: 10.3847/1538-4357/ac90cc
  • 加载中
图(3) / 表(4)
计量
  • 文章访问数:  726
  • HTML全文浏览量:  184
  • PDF下载量:  69
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-01-18
  • 修回日期:  2024-05-23
  • 网络出版日期:  2024-07-15

目录

    /

    返回文章
    返回