留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地球磁层中合声波的频率与传播角分布特征

杨立贤 刘斯 高中磊 周亚雄 高阳 王博闻 金宇玥

杨立贤, 刘斯, 高中磊, 周亚雄, 高阳, 王博闻, 金宇玥. 地球磁层中合声波的频率与传播角分布特征[J]. 空间科学学报, 2024, 44(6): 998-1005. doi: 10.11728/cjss2024.06.2024-yg27
引用本文: 杨立贤, 刘斯, 高中磊, 周亚雄, 高阳, 王博闻, 金宇玥. 地球磁层中合声波的频率与传播角分布特征[J]. 空间科学学报, 2024, 44(6): 998-1005. doi: 10.11728/cjss2024.06.2024-yg27
YANG Lixian, LIU Si, GAO Zhonglei, ZHOU Yaxiong, GAO Yang, WANG Bowen, JIN Yuyue. Statistical Study on Propagation Characteristics of Chorus in the Earth’s Magnetosphere (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 998-1005 doi: 10.11728/cjss2024.06.2024-yg27
Citation: YANG Lixian, LIU Si, GAO Zhonglei, ZHOU Yaxiong, GAO Yang, WANG Bowen, JIN Yuyue. Statistical Study on Propagation Characteristics of Chorus in the Earth’s Magnetosphere (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 998-1005 doi: 10.11728/cjss2024.06.2024-yg27

地球磁层中合声波的频率与传播角分布特征

doi: 10.11728/cjss2024.06.2024-yg27 cstr: 32142.14.cjss.2024-yg27
基金项目: 国家自然科学基金项目资助(42374199, 42274212, 42304183)
详细信息
    作者简介:
    • 杨立贤 男, 2000年7月出生于广东省揭阳市, 现为长沙理工大学物理与电子科学学院硕士研究生, 主要研究方向为地球内磁层等离子体波动. E-mail: yang_lx@foxmail.com
    通讯作者:
    • 刘斯 女, 1984年出生于湖南省娄底市, 现为长沙理工大学物理与电子科学学院教授, 博士生导师, 主要研究方向为磁层物理. E-mail: liusi@csust.edu.cn
  • 中图分类号: P354

Statistical Study on Propagation Characteristics of Chorus in the Earth’s Magnetosphere

  • 摘要: 合声波的频率和传播角是影响其与电子相互作用的关键参数. 2013年1月1日至2015年12月31日期间范艾伦卫星数据的统计分析结果表明, 在传播角θ≈35°处, 较强的合声波(>7×10–4 mV2·m–2·Hz–1)更倾向于出现在更窄的频率范围(0.3~0.4 fce). 随着磁壳数L的增大, θ≈35°处的合声波频谱变窄趋势逐渐明显. 从夜侧到晨侧(21:00 MLT-09:00 MLT), 较强的合声波能够在0.1~0.8 fce的频率范围内被观测到, 但夜侧θ≈35°处的合声波频谱宽度比晨侧更窄. 从上午到昏侧(09:00 MLT-21:00 MLT), 合声波电场功率谱密度明显降低, 且主要以斜传播(θ>60°)的下带合声波为主. 随着磁纬度λMLAT的增大, 上带合声波迅速减弱. 同时, θ≈35°处的下带合声波电场功率谱密度也逐渐下降. 本文揭示了不同区域内合声波强度的频率和传播角分布特征, 为构建更加精确的合声波–电子相互作用全球模型提供了重要信息.

     

  • 图  1  2013年5月7日范艾伦探测器-B观测到的合声波相关波谱数据

    Figure  1.  Van Allen Probe-B observation data on 7 May 2013

    图  2  合声波的平均磁场(a)和电场(b)功率谱密度在θ-fn坐标系中的分布

    Figure  2.  Distribution of the average magnetic field (a) and electric field (b) power spectral density of the chorus in θ-fn coordinate

    图  3  不同L范围内, 合声波电场功率谱密度在θ-fn坐标系中的分布

    Figure  3.  Distribution of the electric field power spectrum density of chorus in θ-fn coordinate within different L

    图  4  不同MLT范围内合声波电场功率谱密度在θ-fn坐标系中的分布

    Figure  4.  Distribution of the electric field power spectrum density of chorus in θ-fn coordinate within different MLT

    图  5  不同λMLAT范围内, 合声波电场功率谱密度在θ-fn坐标系中的分布

    Figure  5.  Distribution of the electric field power spectrum density of chorus in θ-fn coordinate within different λMLAT

  • [1] BURTIS W J, HELLIWELL R A. Banded chorus—A new type of VLF radiation observed in the magnetosphere by OGO 1 and OGO 3[J]. Journal of Geophysical Research, 1969, 74(11): 3002-3010 doi: 10.1029/JA074i011p03002
    [2] HELLIWELL R A. A theory of discrete VLF emissions from the magnetosphere[J]. Journal of Geophysical Research, 1967, 72(19): 4773-4790 doi: 10.1029/JZ072i019p04773
    [3] OMURA Y, KATOH Y, SUMMERS D. Theory and simulation of the generation of whistler-mode chorus[J]. Journal of Geophysical Research: Space Physics, 2008, 113(A4): A04223
    [4] SUMMERS D, TANG R X, THORNE R M. Limit on stably trapped particle fluxes in planetary magnetospheres[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A10): A10210
    [5] SU Z P, ZHU H, XIAO F L, et al. Intense duskside lower band chorus waves observed by Van Allen Probes: Generation and potential acceleration effect on radiation belt electrons[J]. Journal of Geophysical Research: Space Physics, 2014, 119(6): 4266-4273 doi: 10.1002/2014JA019919
    [6] AGAPITOV O, ARTEMYEV A, KRASNOSELSKIKH V, et al. Statistics of whistler-mode waves in the outer radiation belt: Cluster STAFF-SA measurements[J]. Journal of Geophysical Research: Space Physics, 2013, 118(6): 3407-3420 doi: 10.1002/jgra.50312
    [7] TSURUTANI B T, SMITH E J. Two types of magnetospheric ELF chorus and their substorm dependences[J]. Journal of Geophysical Research, 1977, 82(32): 5112-5128 doi: 10.1029/JA082i032p05112
    [8] MEREDITH N P, HORNE R B, ANDERSON R R. Substorm dependence of chorus amplitudes: Implications for the acceleration of electrons to relativistic energies[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A7): 13165-13178 doi: 10.1029/2000JA900156
    [9] KOONS H C, ROEDER J L. A survey of equatorial magnetospheric wave activity between 5 and 8 RE[J]. Planetary and Space Science, 1990, 38(10): 1335-1341 doi: 10.1016/0032-0633(90)90136-E
    [10] LI W, BORTNIK J, THORNE R M, et al. Global distribution of wave amplitudes and wave normal angles of chorus waves using THEMIS wave observations[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A12): A12205
    [11] LI W, THORNE R M, ANGELOPOULOS V, et al. Global distribution of whistler-mode chorus waves observed on the THEMIS spacecraft[J]. Geophysical Research Letters, 2009, 36(9): L09104
    [12] TSURUTANI B T, SMITH E J. Postmidnight chorus: a substorm phenomenon[J]. Journal of Geophysical Research, 1974, 79(1): 118-127 doi: 10.1029/JA079i001p00118
    [13] OMURA Y, HIKISHIMA M, KATOH Y, et al. Nonlinear mechanisms of lower-band and upper-band VLF chorus emissions in the magnetosphere[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A7): A07217
    [14] LIU K J, GARY S P, WINSKE D. Excitation of banded whistler waves in the magnetosphere[J]. Geophysical Research Letters, 2011, 38(14): L14108
    [15] SUMMERS D, MA C, MEREDITH N P, et al. Model of the energization of outer-zone electrons by whistler-mode chorus during the October 9, 1990 geomagnetic storm[J]. Geophysical Research Letters, 2002, 29(24): 2174
    [16] THORNE R M, LI W, NI B, et al. Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus[J]. Nature, 2013, 504(7480): 411-414 doi: 10.1038/nature12889
    [17] SU Z P, XIAO F L, ZHENG H N, et al. Nonstorm time dynamics of electron radiation belts observed by the Van Allen Probes[J]. Geophysical Research Letters, 2014, 41(2): 229-235 doi: 10.1002/2013GL058912
    [18] XIAO F L, YANG C, HE Z G, et al. Chorus acceleration of radiation belt relativistic electrons during March 2013 geomagnetic storm[J]. Journal of Geophysical Research: Space Physics, 2014, 119(5): 3325-3332 doi: 10.1002/2014JA019822
    [19] HE Q, LIU S, XIAO F L, et al. Observations and parametric study on the role of plasma density on extremely low-frequency chorus wave generation[J]. Science China Technological Sciences, 2022, 65(11): 2649-2657 doi: 10.1007/s11431-021-2030-7
    [20] HORNE R B, THORNE R M, SHPRITS Y Y, et al. Wave acceleration of electrons in the Van Allen radiation belts[J]. Nature, 2005, 437(7056): 227-230 doi: 10.1038/nature03939
    [21] Reeves G D, SPENCE H E, HENDERSON M G, et al. Electron acceleration in the heart of the Van Allen radiation belts[J]. Science, 2013, 341(6149): 991-994 doi: 10.1126/science.1237743
    [22] TU W, CUNNINGHAM G S, CHEN Y, et al. Event-specific chorus wave and electron seed population models in DREAM3D using the Van Allen probes[J]. Geophysical Research Letters, 2014, 41(5): 1359-1366 doi: 10.1002/2013GL058819
    [23] SUMMERS D, MA C, MEREDITH N P, et al. Modeling outer-zone relativistic electron response to whistler-mode chorus activity during substorms[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66(2): 133-146 doi: 10.1016/j.jastp.2003.09.013
    [24] SUMMERS D, NI B B, MEREDITH N P. Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves[J]. Journal of Geophysical Research: Space Physics, 2007, 112(A4): A04207
    [25] XIAO F L, ZONG Q G, CHEN L X. Pitch-angle distribution evolution of energetic electrons in the inner radiation belt and slot region during the 2003 Halloween storm[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A1): A01215
    [26] XIAO F L, SU Z P, ZHENG H N, et al. Modeling of outer radiation belt electrons by multidimensional diffusion process[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A3): A03201
    [27] MIYOSHI Y, KATOH Y, NISHIYAMA T, et al. Time of flight analysis of pulsating aurora electrons, considering wave-particle interactions with propagating whistler mode waves[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A10): A10312
    [28] NISHIMURA Y, BORTNIK J, LI W, et al. Identifying the Driver of Pulsating Aurora[J]. Science, 2010, 330(6000): 81-84 doi: 10.1126/science.1193186
    [29] THORNE R M. Radiation belt dynamics: The importance of wave-particle interactions[J]. Geophysical Research Letters, 2010, 37(22): L22107
    [30] GOLDSTEIN B E, TSURUTANI B T. Wave normal directions of chorus near the equatorial source region[J]. Journal of Geophysical Research: Space Physics, 1984, 89(A5): 2789-2810 doi: 10.1029/JA089iA05p02789
    [31] BRENEMAN A W, KLETZING C A, PICKETT J, et al. Statistics of multispacecraft observations of chorus dispersion and source location[J]. Journal of Geophysical Research: Space Physics, 2009, 114(A6): A06202
    [32] AGAPITOV O, KRASNOSELSKIKH V, KHOTYAINTSEV Y V, et al. Correction to “a statistical study of the propagation characteristics of whistler waves observed by Cluster”[J]. Geophysical Research Letters, 2012, 39(24): L24102
    [33] LU Q M, KE Y G, WANG X Y, et al. Two-dimensional gcPIC simulation of rising-tone chorus waves in a dipole magnetic field[J]. Journal of Geophysical Research: Space Physics, 2019, 124(6): 4157-4167 doi: 10.1029/2019JA026586
    [34] KE Y G, GAO X L, LU Q M, et al. Deformation of electron distributions due to Landau trapping by the whistler-mode wave[J]. Geophysical Research Letters, 2022, 49(3): e2021GL096428 doi: 10.1029/2021GL096428
    [35] MAUK B H, FOX N J, KANEKAL S G, et al. Science objectives and rationale for the radiation belt storm probes mission[J]. Space Science Reviews, 2013, 179(1/2/3/4): 3-27
    [36] KURTH W S, DE PASCUALE S, FADEN J B, et al. Electron densities inferred from plasma wave spectra obtained by the waves instrument on Van Allen probes[J]. Journal of Geophysical Research: Space Physics, 2015, 120(2): 904-914 doi: 10.1002/2014JA020857
    [37] LI W O, SANTOLIK J, BORTNIK R M, et al. New chorus wave properties near the equator from Van Allen probes wave observations[J]. Geophysical Research Letters, 2016, 43: 4725-4735 doi: 10.1002/2016GL068780
  • 加载中
图(5)
计量
  • 文章访问数:  268
  • HTML全文浏览量:  82
  • PDF下载量:  43
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-10-05
  • 录用日期:  2024-11-15
  • 修回日期:  2024-11-07
  • 网络出版日期:  2024-11-15

目录

    /

    返回文章
    返回