留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子重联中电磁场结构的粒子模拟

胡市航 陆全明 关云丹 卢三

胡市航, 陆全明, 关云丹, 卢三. 电子重联中电磁场结构的粒子模拟[J]. 空间科学学报, 2024, 44(6): 970-978. doi: 10.11728/cjss2024.06.2024-yg31
引用本文: 胡市航, 陆全明, 关云丹, 卢三. 电子重联中电磁场结构的粒子模拟[J]. 空间科学学报, 2024, 44(6): 970-978. doi: 10.11728/cjss2024.06.2024-yg31
HU Shihang, LU Quanming, GUAN Yundan, LU San. Particle-in-cell Simulation of Electromagnetic Field Structure in the Electron-only Reconnection (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 970-978 doi: 10.11728/cjss2024.06.2024-yg31
Citation: HU Shihang, LU Quanming, GUAN Yundan, LU San. Particle-in-cell Simulation of Electromagnetic Field Structure in the Electron-only Reconnection (in Chinese). Chinese Journal of Space Science, 2024, 44(6): 970-978 doi: 10.11728/cjss2024.06.2024-yg31

电子重联中电磁场结构的粒子模拟

doi: 10.11728/cjss2024.06.2024-yg31 cstr: 32142.14.cjss.2024-yg31
基金项目: 国家重点研发计划项目资助(2022YFA1604600)
详细信息
    作者简介:
    • 胡市航 男, 2001年3月出生于河北省武安市, 现为中国科学技术大学地球和空间科学学院在读硕士研究生. 主要研究方向为磁场重联的实验研究和数值模拟. E-mail: shihang_hu@mail.ustc.edu.cn
    通讯作者:
    • 陆全明 男, 1969年生, 现为中国科学技术大学地球和空间科学学院教授, 博士生导师. 长江学者特聘教授, 国家杰出青年科学基金获得者. 主要研究方向为空间等离子体物理和粒子模拟高性能计算. E-mail: qmlu@ustc.edu.cn
  • 中图分类号: P354

Particle-in-cell Simulation of Electromagnetic Field Structure in the Electron-only Reconnection

  • 摘要: 采用2.5D全粒子模拟程序研究了强引导场情况下的电子重联, 分析了重联率最大时刻霍尔磁场、霍尔电场及电子流速的空间分布特征. 重联率最大时刻, 观察到分离线两侧的电子入流及出流, 并且有四极霍尔磁场生成. 与早期标准重联的研究结果不同, 霍尔磁场并未在引导场的作用下发生明显扭曲. 同时分离线区域发生电荷分离, 并生成近似对称分布的霍尔电场. 此外, 研究了电子流速空间分布的时间演化. 在重联前期, 电子主要沿磁力线流动, 即 $ \boldsymbol{v}_{{\mathrm{e}}}\approx v_{\mathrm{e}y}\boldsymbol{B}/B_y $; 在重联后期, 电子运动由电场漂移所主导, 即 $ \boldsymbol{v}_{{\mathrm{e}}}\approx\boldsymbol{E}\times\left(B_y\boldsymbol{e}_{{{y}}}\right)/B_y^2 $. 模拟结果表明, 电子重联中可以发生极强的电荷分离, 生成近似对称分布的霍尔电场. 在引导场下, 这种霍尔电场将导致电子的电场漂移, 并主导电子流速的面内空间分布, 进而生成近似对称分布的霍尔电流和四极霍尔磁场.

     

  • 图  1  重联点磁通量$ \varPsi $和重联率$ \mathrm{d}\varPsi /\mathrm{d}t $随时间的演化

    Figure  1.  Temporal evolution of the reconnected magnetic flux $ \varPsi $ and the reconnection rate $ \mathrm{d}\varPsi /\mathrm{d}t $ at the X-line

    图  2  $ {\varOmega }_{\mathrm{i}}t=0.45 $时刻面外重联电场$ {E}_{y} $, 电子面外电流$ {J}_{\mathrm{e}y} $, 离子面外电流$ {J}_{\mathrm{i}y} $和$ {J}_{\mathrm{e}y}{E}_{y} $面内空间分布 (黑色实线表示磁力线)

    Figure  2.  Color contours of the reconnection electric field $ {E}_{y}$, the out-of-plane current of electrons $ {J}_{\mathrm{e}y} $, the out-of-plane current of ions $ {J}_{\mathrm{i}y} $, and $ {J}_{\mathrm{e}y}{E}_{y} $ at $ {\varOmega }_{\mathrm{i}}t=0.45 $ (The black lines represent the magnetic field lines)

    图  3  $ {\varOmega }_{\mathrm{i}}t=0.45 $时刻$ x $方向离子流速$ {v}_{\mathrm{i}x} $, $ z $方向离子流速$ {v}_{\mathrm{i}z} $, $ x $方向电子流速$ {v}_{\mathrm{e}x} $和$ z $方向电子流速$ {v}_{\mathrm{e}z} $的面内空间分布(黑色实线表示磁力线)

    Figure  3.  Color contours of the ion bulk velocity in the $ x $ direction $ {v}_{\mathrm{i}x} $, the ion bulk velocity in the $ z $ direction $ {v}_{\mathrm{i}z} $, the electron bulk velocity in the $ x $ direction $ {v}_{\mathrm{e}x} $, and the electron bulk velocity in the $ z $ direction $ {v}_{\mathrm{e}z} $ at $ {\varOmega }_{\mathrm{i}}t=0.45 $ (The black lines represent the magnetic field lines)

    图  4  $ {\varOmega }_{\mathrm{i}}t=0.45 $时刻霍尔磁场$ {\Delta }{B}_{y}={B}_{y}-{B}_{\mathrm{g}} $, 电荷密度$ \rho $, 面内电场$ {E}_{x} $和面内电场$ {E}_{z} $的面内空间分布 (黑色实线表示磁力线)

    Figure  4.  Color contours of the Hall magnetic field $ {\Delta }{B}_{y}={B}_{y}-{B}_{\mathrm{g}} $, the charge density $ \rho $, the electric field $ {E}_{x} $, and the electric field $ {E}_{z} $ at $ {\varOmega }_{\mathrm{i}}t=0.45 $ (The black lines represent the magnetic field lines)

    图  5  $ {\varOmega }_{\mathrm{i}}t=0.10 $和$ {\varOmega }_{\mathrm{i}}t=0.45 $时刻$ x $方向电子流速$ {v}_{\mathrm{e}x} $和$ z $方向电子流速$ {v}_{\mathrm{e}z} $的面内空间分布 (黑色实线表示磁力线)

    Figure  5.  Color contours of the electron bulk velocity in the $ x $ direction $ {v}_{\mathrm{e}x} $ and the electron bulk velocity in the $ z $ direction $ {v}_{\mathrm{e}z} $ at $ {\varOmega }_{\mathrm{i}}t=0.10 $ and $ {\varOmega }_{\mathrm{i}}t=0.45 $ (The black lines represent the magnetic field lines)

  • [1] VASYLIUNAS V M. Theoretical models of magnetic field line merging[J]. Reviews of Geophysics, 1975, 13(1): 303-336 doi: 10.1029/RG013i001p00303
    [2] BISKAMP D. Magnetic Reconnection in Plasmas[M]. Cambridge: Cambridge University Press, 2000. DOI: 10.1017/CBO9780511599958
    [3] YAMADA M, KULSRUD R, JI H T. Magnetic reconnection[J]. Reviews of Modern Physics, 2010, 82(1): 603-664. doi: 10.1103/RevModPhys.82.603
    [4] 王水, 陆全明. 无碰撞磁场重联[M]. 北京: 科学出版社, 2019

    WANG Shui, LU Quanming. Collisionless Magnetic Reconnection[M]. Beijing: Science Press, 2019
    [5] MASUDA S, KOSUGI T, HARA H, et al. A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection[J]. Nature, 1994, 371(6497): 495-497 doi: 10.1038/371495a0
    [6] KRUCKER S, HUDSON H S, GLESENER L, et al. Measurements of the coronal acceleration region of a solar flare[J]. The Astrophysical Journal, 2010, 714(2): 1108-1119 doi: 10.1088/0004-637X/714/2/1108
    [7] CASSAK P A, SHAY M A. Magnetic reconnection for coronal conditions: reconnection rates, secondary islands and onset[J]. Space Science Reviews, 2012, 172(1): 283-302 doi: 10.1007/s11214-011-9755-2
    [8] SANG L L, LU Q M, XIE J L, et al. Experimental studies on the propagation of whistler-mode waves in a magnetized plasma structure with a non-uniform density[J]. Plasma Science and Technology, 2023, 25(9): 095301 doi: 10.1088/2058-6272/acc502
    [9] GOSLING J T, SKOUG R M, MCCOMAS D J, et al. Direct evidence for magnetic reconnection in the solar wind near 1 AU[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A1): A01107 doi: 10.1029/2004JA010809
    [10] WANG R S, WANG S M, LU Q M, et al. Direct observation of turbulent magnetic reconnection in the solar wind[J]. Nature Astronomy, 2023, 7(1): 18-28 doi: 10.1038/s41550-022-01818-5
    [11] WANG R S, YU X C, WANG Y M, et al. Observation of the hall magnetic reconnection as close as 56 solar Radii from the sun[J]. The Astrophysical Journal, 2023, 947(2): 78 doi: 10.3847/1538-4357/acbdf6
    [12] ØIEROSET M, PHAN T D, FUJIMOTO M, et al. In situ detection of collisionless reconnection in the Earth’s magnetotail[J]. Nature, 2001, 412 (6845): 414-417. DOI: 10.1038/35086520
    [13] WANG R S, LU Q M, DU A M, et al. In situ observations of a secondary magnetic island in an ion diffusion region and associated energetic electrons[J]. Physical Review Letters, 2010, 104 (17): 175003. DOI: 10.1103/PhysRevLett.104.175003
    [14] ZHANG T L, LU Q M, BAUMJOHANN W, et al. Magnetic reconnection in the near Venusian magnetotail[J]. Science, 2012, 336(6081): 567-570 doi: 10.1126/science.1217013
    [15] LU Q M, FU H S, WANG R S, et al. Collisionless magnetic reconnection in the magnetosphere[J]. Chinese Physics B, 2022, 31(8): 089401 doi: 10.1088/1674-1056/ac76ab
    [16] WANG R S, CHENG Z H, SLAVIN J A, et al. Direct detection of ongoing magnetic reconnection at mercury’s high-latitude magnetopause[J]. Geophysical Research Letters, 2024, 51(5): e2023GL106282 doi: 10.1029/2023GL106282
    [17] YAMADA M, REN Y, JI H T, et al. Experimental study of two-fluid effects on magnetic reconnection in a laboratory plasma with variable collisionality[J]. Physics of Plasmas, 2006, 13(5): 052119 doi: 10.1063/1.2203950
    [18] EGEDAL J, FOX W, KATZ N, et al. Laboratory observations of spontaneous magnetic reconnection[J]. Physical Review Letters, 2007, 98(1): 015003 doi: 10.1103/PhysRevLett.98.015003
    [19] LI C K, SÉGUIN F H, FRENJE J A, et al. Observation of megagauss-field topology changes due to magnetic reconnection in laser-produced plasmas[J]. Physical Review Letters, 2007, 99(5): 055001 doi: 10.1103/PhysRevLett.99.055001
    [20] DONG Q L, WANG S J, LU Q M, et al. Plasmoid ejection and secondary current sheet generation from magnetic reconnection in laser-plasma interaction[J]. Physical Review Letters, 2012, 108(21): 215001 doi: 10.1103/PhysRevLett.108.215001
    [21] YAMADA M, YOO J, JARA-ALMONTE J, et al. Study of energy conversion and partitioning in the magnetic reconnection layer of a laboratory plasma[J]. Physics of Plasmas, 2015, 22(5): 056501 doi: 10.1063/1.4920960
    [22] SANG L L, LU Q M, XIE J L, et al. Energy dissipation during magnetic reconnection in the Keda linear magnetized plasma device[J]. Physics of Plasmas, 2022, 29(10): 102108 doi: 10.1063/5.0090790
    [23] MA Z W, BHATTACHARJEE A. Hall magnetohydrodynamic reconnection: the geospace environment modeling challenge[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A3): 3773-3782 doi: 10.1029/1999JA001004
    [24] PRITCHETT P L. Geospace Environment Modeling magnetic reconnection challenge: simulations with a full particle electromagnetic code[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A3): 3783-3798 doi: 10.1029/1999JA001006
    [25] HUANG C, WANG R S, LU Q M, et al. Electron density hole and quadruple structure of B y during collisionless magnetic reconnection[J]. Chinese Science Bulletin, 2010, 55(8): 718-722 doi: 10.1007/s11434-009-0538-z
    [26] LU Q M, HUANG C, XIE J L, et al. Features of separatrix regions in magnetic reconnection: Comparison of 2-D particle-in-cell simulations and Cluster observations[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A11): A11208 doi: 10.1029/2010JA015713
    [27] ZHOU M, DENG X H, ZHONG Z H, et al. Observations of an electron diffusion region in symmetric reconnection with weak guide field[J]. The Astrophysical Journal, 2019, 870(1): 34 doi: 10.3847/1538-4357/aaf16f
    [28] KUZNETSOVA M M, HESSE M, WINSKE D. Kinetic quasi-viscous and bulk flow inertia effects in collisionless magnetotail reconnection[J]. Journal of Geophysical Research: Space Physics, 1998, 103(A1): 199-213 doi: 10.1029/97JA02699
    [29] HESSE M, SCHINDLER K, BIRN J, et al. The diffusion region in collisionless magnetic reconnection[J]. Physics of Plasmas, 1999, 6(5): 1781-1795 doi: 10.1063/1.873436
    [30] EGEDAL J, GURRAM H, GREESS S, et al. The force balance of electrons during kinetic anti-parallel magnetic reconnection[J]. Physics of Plasmas, 2023, 30(6): 062106 doi: 10.1063/5.0130417
    [31] BIRN J, DRAKE J F, SHAY M A, et al. Geospace Environmental Modeling (GEM) magnetic reconnection challenge[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A3): 3715-3719 doi: 10.1029/1999JA900449
    [32] LU Q M, WANG R S, XIE J L, et al. Electron dynamics in collisionless magnetic reconnection[J]. Chinese Science Bulletin, 2011, 56(12): 1174-1181 doi: 10.1007/s11434-011-4440-0
    [33] LU S, LU Q M, CAO Y, et al. The effects of the guide field on the structures of electron density depletions in collisionless magnetic reconnection[J]. Chinese Science Bulletin, 2011, 56(1): 48-52 doi: 10.1007/s11434-010-4250-9
    [34] (傅向荣, 郭俊, 王水. 存在初始引导场情况下的无碰撞磁场重联[J]. 空间科学学报, 2006, 26(6): 432-439 doi: 10.11728/cjss2006.06.432

    FU Xiangrong, GUO Jun, WANG Shui. Collisionless magnetic reconnection in presence of a guide field[J]. Chinese Journal of Space Science, 2006, 26(6): 432-439 doi: 10.11728/cjss2006.06.432
    [35] FU X R, LU Q M, WANG S. The process of electron acceleration during collisionless magnetic reconnection[J]. Physics of Plasmas, 2006, 13(1): 012309 doi: 10.1063/1.2164808
    [36] LU S, ANGELOPOULOS V, PRITCHETT P L, et al. Electrodynamic contributions to the hall- and parallel electric fields in collisionless magnetic reconnection[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): e2021JA029550 doi: 10.1029/2021JA029550
    [37] LU S, WANG R S, LU Q M, et al. Magnetotail reconnection onset caused by electron kinetics with a strong external driver[J]. Nature Communications, 2020, 11(1): 5049 doi: 10.1038/s41467-020-18787-w
    [38] HUBBERT M, QI Y, RUSSELL C T, et al. Electron-only tail current sheets and their temporal evolution[J]. Geophysical Research Letters, 2021, 48(5): e2020GL091364 doi: 10.1029/2020GL091364
    [39] HUBBERT M, RUSSELL C T, QI Y, et al. Electron-only reconnection as a transition phase from quiet magnetotail current sheets to traditional magnetotail reconnection[J]. Journal of Geophysical Research: Space Physics, 2022, 127(3): e2021JA029584 doi: 10.1029/2021JA029584
    [40] LU S, LU Q M, WANG R S, et al. Electron-only reconnection as a transition from quiet current sheet to standard reconnection in earth’s magnetotail: particle-in-cell simulation and application to MMS data[J]. Geophysical Research Letters, 2022, 49(11): e2022GL098547 doi: 10.1029/2022GL098547
    [41] WANG R S, LU Q M, NAKAMURA R, et al. An electron-scale current sheet without bursty reconnection signatures observed in the near-earth tail[J]. Geophysical Research Letters, 2018, 45(10): 4542-4549 doi: 10.1002/2017GL076330
    [42] WANG R S, LU Q M, LU S, et al. Physical implication of two types of reconnection electron diffusion regions with and without ion-coupling in the magnetotail current sheet[J]. Geophysical Research Letters, 2020, 47(21): e2020GL088761 doi: 10.1029/2020GL088761
    [43] MAN H Y, ZHOU M, YI Y Y, et al. Observations of electron-only magnetic reconnection associated with macroscopic magnetic flux ropes[J]. Geophysical Research Letters, 2020, 47(19): e2020GL089659 doi: 10.1029/2020GL089659
    [44] PHAN T D, EASTWOOD J P, SHAY M A, et al. Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath[J]. Nature, 2018, 557(7704): 202-206 doi: 10.1038/s41586-018-0091-5
    [45] STAWARZ J E, EASTWOOD J P, PHAN T D, et al. Properties of the turbulence associated with electron-only magnetic reconnection in earth’s magnetosheath[J]. The Astrophysical Journal Letters, 2019, 877(2): L37 doi: 10.3847/2041-8213/ab21c8
    [46] SHI P Y, SRIVASTAV P, BARBHUIYA M H, et al. Electron-only reconnection and associated electron heating and acceleration in PHASMA[J]. Physics of Plasmas, 2022, 29(3): 032101 doi: 10.1063/5.0082633
    [47] SHI P Y, SRIVASTAV P, BARBHUIYA M H, et al. Laboratory observations of electron heating and Non-Maxwellian distributions at the kinetic scale during electron-only magnetic reconnection[J]. Physical Review Letters, 2022, 128(2): 025002 doi: 10.1103/PhysRevLett.128.025002
    [48] PYAKUREL P S, SHAY M A, PHAN T D, et al. Transition from ion-coupled to electron-only reconnection: Basic physics and implications for plasma turbulence[J]. Physics of Plasmas, 2019, 26(8): 082307 doi: 10.1063/1.5090403
    [49] CALIFANO F, CERRI S S, FAGANELLO M, et al. Electron-only reconnection in plasma turbulence[J]. Frontiers in Physics, 2020, 8: 317 doi: 10.3389/fphy.2020.00317
    [50] VEGA C, ROYTERSHTEYN V, DELZANNO G L, et al. Electron-only reconnection in Kinetic-Alfvén turbulence[J]. The Astrophysical Journal Letters, 2020, 893(1): L10 doi: 10.3847/2041-8213/ab7eba
    [51] LU Q M, YANG Z W, WANG H Y, et al. Two-dimensional particle-in-cell simulation of magnetic reconnection in the downstream of a quasi-perpendicular shock[J]. The Astrophysical Journal, 2021, 919(1): 28 doi: 10.3847/1538-4357/ac18c0
    [52] GUAN Y D, LU Q M, LU S, et al. Reconnection rate and transition from ion-coupled to electron-only reconnection[J]. The Astrophysical Journal, 2023, 958(2): 172 doi: 10.3847/1538-4357/ad05b8
    [53] LIU D K, LU S, LU Q M, et al. Spontaneous onset of collisionless magnetic reconnection on an electron scale[J]. The Astrophysical Journal Letters, 2020, 890(2): L15 doi: 10.3847/2041-8213/ab72fe
    [54] LIU D K, HUANG K, LU Q M, et al. The evolution of collisionless magnetic reconnection from electron scales to ion scales[J]. The Astrophysical Journal, 2021, 922(1): 51 doi: 10.3847/1538-4357/ac2900
    [55] AN X, ARTEMYEV A, ANGELOPOULOS V, et al. Ki-netic equilibrium of two-dimensional force-free current sheets[J]. The Astrophysical Journal, 2023, 952(1): 36 doi: 10.3847/1538-4357/acdc1c
    [56] LIU Y H, HESSE M, GUO F, et al. Why does steady-state magnetic reconnection have a maximum local rate of order 0.1?[J]. Physical Review Letters, 2017, 118(8): 085101 doi: 10.1103/PhysRevLett.118.085101
    [57] GOLDMAN M V, NEWMAN D L, LAPENTA G. What can we learn about magnetotail reconnection from 2D PIC Harris-Sheet simulations?[J]. Space Science Reviews, 2016, 199(1): 651-688 doi: 10.1007/s11214-015-0154-y
    [58] CHANG C, LU Q M, LU S, et al. Ion and electron motions in the outer electron diffusion region of collisionless magnetic reconnection[J]. Earth and Planetary Physics, 2024, 8(3): 472-478 doi: 10.26464/epp2024020
    [59] WYGANT J R, CATTELL C A, LYSAK R, et al. Cluster observations of an intense normal component of the electric field at a thin reconnecting current sheet in the tail and its role in the shock-like acceleration of the ion fluid into the separatrix region[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A9): A09206 doi: 10.1029/2004JA010708
    [60] HUANG C, LU Q M, WANG S. The mechanisms of electron acceleration in antiparallel and guide field magnetic reconnection[J]. Physics of Plasmas, 2010, 17(7): 072306 doi: 10.1063/1.3457930
    [61] HUANG C, LU Q, YANG Z, et al. The evolution of electron current sheet and formation of secondary islands in guide field reconnection[J]. Nonlinear Processes in Geophysics, 2011, 18(5): 727-733 doi: 10.5194/npg-18-727-2011
  • 加载中
图(5)
计量
  • 文章访问数:  272
  • HTML全文浏览量:  98
  • PDF下载量:  70
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-10-28
  • 修回日期:  2024-11-10
  • 网络出版日期:  2024-11-19

目录

    /

    返回文章
    返回