Deep Learning Kp Computational Prediction Combined Multimodal Data of Solar Wind and EUV Images
-
摘要: 由于观测卫星轨道差异及多模态天文数据特性, SDO和ACE卫星观测到的太阳爆发事件分别将在3∼4天、0.5-2小时后影响地磁场。与ACE单一的太阳风数据相比,SDO的极紫外成像数据蕴含更早的磁暴信息,可用于提前预测地磁暴等级、Kp指数等参数。本文通过深度学习技术,利用SDO和ACE的海量观测数据,构建太阳风、冕洞、太阳极紫外成像与Kp指数的强关联模型,建立多模态跨尺度的Kp指数预测体系。针对太阳风数据物理解释不足和样本平衡问题,设计并实践特征筛选,构建跨年度的数据集。以2011-2019年数据为核心,实验验证了多种深度学习预测模型:基于太阳风的直接Kp指数预测模型(DWKp)、通过极紫外多模态图像间接实现跨尺度太阳风预测的Kp模型(MMKpI)、融合冕洞位置信息的Kp预测模型(MLoCH)。在3小时预测范围内,三类模型均取得相近的优良性能;当预测范围扩展至6-12小时,DWKp模型保持稳定表现;MLoCH模型在15-33小时预测区间仍达预期效果,其预测能力更可提前至72小时(相关系数CC≈0.23)。
Abstract: Due to the difference of the orbits of the observatories and multi-modal astronomical data, the solar eruption observed by SDO and ACE will impact the geomagnetic field in 3∼4 days and 0.5-2 hours respectively. Compared with the single solar wind data from ACE, the EUV image-related data from SDO contains earlier magnetic storm information, and could be applied to earlier forecast the grade of geomagnetic storm, geomagnetic index Kp and other parameters. This study aims to strongly connect Kp index and solar wind, coronal hole, solar extreme ultraviolet images together and establish multimodal and multi-scale models for Kp index prediction by virtue of deep learning and a great deal of data sourced from SDO and ACE. To avoid problems of ignoring physical meaning and sample balance on solar wind data, feature construction is designed and feature selection is carried to establish data set of years. Mainly focusing on data from 2011 to 2019, several deep learning Kp prediction models are verified experimentally. Direct Kp index prediction of solar wind (DWKp), Kp prediction by way of indirect multi-scale solar wind based on multimodal EUV images (MMKpI), and Kp prediction taking account of coronal hole location information (MLoCH), all achieve better and similar performance in 3h prediction range. As the prediction range extended to 6h-12h, DWKp model shows the satisfied performance, and MLoCH model obtains the predetermined performance while the range stretches to 15h-33h. Furthermore, the MLoCH even achieves the advance time to 72h with CC around 0.23.-
Key words:
- geomagnetism index /
- deep learning /
- coronal hole /
- multi-scale computation /
- sun activity
-
-
计量
- 文章访问数: 9
- HTML全文浏览量: 2
- PDF下载量: 0
-
被引次数:
0(来源:Crossref)
0(来源:其他)
下载: