Progress in Simulations of Solar Energetic Particles (SEPs) Propagation in Large-Scale Structures of Interplanetary Background Solar Wind
-
摘要: 太阳高能粒子事件(SEP)是由太阳耀斑或日冕物质抛射(CME)驱动,能够短时间内产生几 keV 至几 GeV 能量的粒子,会对航天器、宇航员以及地球空间环境构成严重威胁。随着人类太空活动的增加,对SEP事件的预测和防护成为空间天气预报的重要任务之一。太阳高能粒子在行星际空间中的传播特性受背景太阳风中大尺度结构的显著影响。为了更准确地模拟和预测SEP事件的传播和演化,沈芳团队采用了多种背景太阳风模型,如类Parker解析模型、卫星观测数据驱动模型和三维磁流体力学模型,结合聚焦传输方程描述的SEP传播模型,进行了细致的参数化研究,并针对多个与流相互作用区(SIR)密切相关的典型SEP事件进行了模拟和分析。他们研究了压缩区磁场、垂直扩散机制及倾斜偶极结构对粒子通量演化的调控规律。研究结果发现磁聚焦效应是导致通量增强的主要原因,快太阳风条件下绝热冷却效应对粒子通量衰减阶段有关键影响。共转相互作用区(CIR)的宽度与太阳风速度、倾斜角和快流方位角宽度密切相关,而且不同压缩区域中粒子加速效率及时空分布特征显著受背景结构调制。引入垂直扩散可以解释不同观测位置SEP通量剖面的差异,更精细地反映与SIR结构相关的通量抬升的SEP事件的粒子传播特性。当前研究已初步构建大尺度太阳风对SEP传播调制的理论框架,未来可以通过整合高精度观测与多参数模型加强对CME驱动激波的模拟,以提升对粒子传输描述精确性。Abstract: Solar energetic particle (SEP) events, driven by solar flares or coronal mass ejections (CMEs), generate high-energy particles (ranging from keV to GeV) that pose significant threats to spacecraft, astronauts, and Earth's space environment. As human space activities expand, predicting and mitigating SEP events has become a critical task in space weather forecasting. The propagation of SEPs in interplanetary space is strongly modulated by large-scale solar wind structures, particularly Stream Interaction Regions (SIRs). To improve SEP prediction accuracy, research teams have employed multiple solar wind models --- including Parker-like analytical solutions, satellite-observation-driven frameworks, and three-dimensional (3D) magnetohydrodynamic (MHD) simulations --- coupled with SEP transport models based on the focused transport equation. Simulations reveal that magnetic focusing effects dominate flux enhancements in compression regions, while adiabatic cooling in fast solar wind significantly accelerates particle energy decay. The width of corotating interaction regions (CIRs) is closely linked to solar wind speed, tilt angle, and fast-stream azimuthal extent, modulating particle acceleration efficiency and spatiotemporal intensity profiles. Incorporating perpendicular diffusion into data-driven models refines the characterization of SIR-associated SEP events, explaining flux profile discrepancies across observational locations. While a theoretical framework linking large-scale solar wind structures to SEP propagation has been established, future work would integrate high-resolution observations with multi-parameter models to enhance simulations of CME-driven shocks and improve the precision of particle transport descriptions.
-
-
计量
- 文章访问数: 15
- HTML全文浏览量: 1
- PDF下载量: 1
-
被引次数:
0(来源:Crossref)
0(来源:其他)