[1] |
WANG L L, JIAO P F, DANG C B, et al. Condensation heat transfer characteristics of R1234yf and other Refrigerants inside small-scale tube: an experimental study and heat transfer correlation development[J]. Heat and Mass Transfer, 2022, 58(6): 1059-1074 doi: 10.1007/s00231-021-03164-0
|
[2] |
ŁUKASZUK M, SKIEPKO T. Condensation heat transfer coefficient during steam intermittent flows in a horizontal minichannel[J]. Experimental Thermal and Fluid Science, 2023, 145: 110875 doi: 10.1016/j.expthermflusci.2023.110875
|
[3] |
BERTO A, AZZOLIN M, BORTOLIN S, et al. Condensation heat transfer in microgravity conditions[J]. npj Microgravity, 2023, 9(1): 32 doi: 10.1038/s41526-023-00276-1
|
[4] |
康琦, 侯瑞. 微重力流体管理在航天工程中的应用[J]. 自然杂志, 2007, 29(6): 328-334 doi: 10.3969/j.issn.0253-9608.2007.06.004KANG Qi, HOU Rui. The applications of microgravity fluid management in the aerospace engineering[J]. Chinese Journal of Nature, 2007, 29(6): 328-334 doi: 10.3969/j.issn.0253-9608.2007.06.004
|
[5] |
赵建福, 林海, 解京昌, 等. 失重飞机搭载气/液两相流实验研究[J]. 空间科学学报, 2000, 20(4): 340-347 doi: 10.3969/j.issn.0254-6124.2000.04.009ZHAO Jianfu, LIN Hai, XIE Jingchang, et al. Experimental investigation of gas-liquid two-phase flow utilizing reduced gravity airplane[J]. Chinese Journal of Space Science, 2000, 20(4): 340-347 doi: 10.3969/j.issn.0254-6124.2000.04.009
|
[6] |
赵建福, 林海, 解京昌, 等. 微重力条件下气/液两相流压降实验研究[J]. 应用基础与工程科学学报, 2001, 9(4): 373-380 doi: 10.3969/j.issn.1005-0930.2001.04.012ZHAO Jianfu, LIN Hai, XIE Jingchang, et al. Experimental study on pressure drop of two-phase gas-liquid flow at microgravity conditions[J]. Journal of Basic Science and Engineering, 2001, 9(4): 373-380 doi: 10.3969/j.issn.1005-0930.2001.04.012
|
[7] |
FANG X D, ZHANG H G, XU Y, et al. Evaluation of using two-phase frictional pressure drop correlations for normal gravity to microgravity and reduced gravity[J]. Advances in Space Research, 2012, 49(2): 351-364 doi: 10.1016/j.asr.2011.09.038
|
[8] |
BAI W D, CHEN W, LI M F, et al. An improved mass transfer model for film condensation numerical simulation[J]. International Journal of Heat and Mass Transfer, 2023, 202: 123686 doi: 10.1016/j.ijheatmasstransfer.2022.123686
|
[9] |
HE F L, DU W F, MIAO J Y, et al. Numerical investigation of the gravity effect on two-phase flow and heat transfer of neon condensation inside horizontal tubes[J]. Applied Thermal Engineering, 2023, 233: 121162 doi: 10.1016/j.applthermaleng.2023.121162
|
[10] |
LIU N, ZHAO Q, LAN Z X. Flow regimes and transitions for two-phase flow of R152a during condensation in a circular minichannel[J]. Frontiers in Energy Research, 2021, 9: 792586 doi: 10.3389/fenrg.2021.792586
|
[11] |
NEBULONI S, THOME J R. Film condensation under normal and microgravity: effect of channel shape[J]. Microgravity Science and Technology, 2007, 19(3/4): 125-127
|
[12] |
COLEMAN J W, GARIMELLA S. Two-phase flow regimes in round, square and rectangular tubes during condensation of refrigerant R134a[J]. International Journal of Refrigeration, 2003, 26(1): 117-128 doi: 10.1016/S0140-7007(02)00013-0
|
[13] |
BAI C, QIU Y, WEI M, et al. Converging-shaped small channel for condensation heat transfer enhancement under varying-gravity conditions[J]. International Communications in Heat and Mass Transfer, 2021, 123: 105171 doi: 10.1016/j.icheatmasstransfer.2021.105171
|
[14] |
LIPS S, MEYER J P. Effect of gravity forces on heat transfer and pressure drop during condensation of R134a[J]. Microgravity Science and Technology, 2012, 24(3): 157-164 doi: 10.1007/s12217-011-9292-3
|
[15] |
WANG W C, MA X H, WEI Z D, et al. Two-phase flow patterns and transition characteristics for in-tube condensation with different surface inclinations[J]. International Journal of Heat and Mass Transfer, 1998, 41(24): 4341-4349 doi: 10.1016/S0017-9310(98)00041-6
|
[16] |
AZZOLIN M, BORTOLIN S, LE NGUYEN L P, et al. Experimental investigation of in-tube condensation in microgravity[J]. International Communications in Heat and Mass Transfer, 2018, 96: 69-79 doi: 10.1016/j.icheatmasstransfer.2018.05.013
|
[17] |
SPARROW E M, GREGG J L. A theory of rotating condensation[J]. Journal of Heat Transfer, 1959, 81(2): 113-119 doi: 10.1115/1.4008150
|
[18] |
SPARROW E M, GREGG J L. The effect of vapor drag on rotating condensation[J]. Journal of Heat Transfer, 1960, 82(1): 71-72 doi: 10.1115/1.3679881
|
[19] |
SPARROW E M, HARTNETT J P. Condensation on a rotating cone[J]. Journal of Heat Transfer, 1961, 83(1): 101-102 doi: 10.1115/1.3680454
|
[20] |
BERTO A, AZZOLIN M, LAVIEILLE P, et al. Experimental investigation of liquid film thickness and heat transfer during condensation in microgravity[J]. International Journal of Heat and Mass Transfer, 2022, 199: 123467 doi: 10.1016/j.ijheatmasstransfer.2022.123467
|
[21] |
LEE H, MUDAWAR I, HASAN M M. Experimental and theoretical investigation of annular flow condensation in microgravity[J]. International Journal of Heat and Mass Transfer, 2013, 61: 293-309 doi: 10.1016/j.ijheatmasstransfer.2013.02.010
|
[22] |
DEY P, RAJ D, SAHA S K. A numerical study on condensation heat transfer characteristics of R134a in microchannel under varying gravity conditions[J]. Microgravity Science and Technology, 2021, 33(3): 34 doi: 10.1007/s12217-021-09884-6
|