留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于网络引导随机森林的电离辐射对人类B细胞影响机制

何敏敏 朱玉锋 吕萱 唐广燕 全源

何敏敏, 朱玉锋, 吕萱, 唐广燕, 全源. 基于网络引导随机森林的电离辐射对人类B细胞影响机制[J]. 空间科学学报, 2025, 45(2): 506-516. doi: 10.11728/cjss2025.02.2024-0055
引用本文: 何敏敏, 朱玉锋, 吕萱, 唐广燕, 全源. 基于网络引导随机森林的电离辐射对人类B细胞影响机制[J]. 空间科学学报, 2025, 45(2): 506-516. doi: 10.11728/cjss2025.02.2024-0055
HE Minmin, ZHU Yufeng, LÜ Xuan, TANG Guangyan, QUAN Yuan. Mechanism of the Effect of Ionizing Radiation on Human B Cells Based on Network-guided Random Forest (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 506-516 doi: 10.11728/cjss2025.02.2024-0055
Citation: HE Minmin, ZHU Yufeng, LÜ Xuan, TANG Guangyan, QUAN Yuan. Mechanism of the Effect of Ionizing Radiation on Human B Cells Based on Network-guided Random Forest (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 506-516 doi: 10.11728/cjss2025.02.2024-0055

基于网络引导随机森林的电离辐射对人类B细胞影响机制

doi: 10.11728/cjss2025.02.2024-0055 cstr: 32142.14.cjss.2024-0055
基金项目: 中国科协青年人才托举工程项目(2023QNRC001)和国家自然科学基金青年项目 (32300545) 共同资助
详细信息
    作者简介:
    • 何敏敏 女, 1998年12月出生于山西省运城市, 毕业于华中农业大学信息学院生物信息系. 主要研究方向为空间疾病致病机制解析、药物发现等. E-mail: 1173505363@qq.com
    • 朱玉锋 男, 2001年11月出生于江苏省泰州市, 毕业于华中农业大学信息学院生物信息系. 主要研究方向为空间生物医学、药物筛选等. E-mail: neverbo1101@outlook.com
    通讯作者:
    • 全源 女, 1990年7月出生于广西壮族自治区柳州市, 现为华中农业大学信息学院副研究员, 博士生导师, 主要研究方向为空间生物信息学、空间医学、药物发现等. E-mail: quanyuan@mail.hzau.edu.cn
  • 中图分类号: V7

Mechanism of the Effect of Ionizing Radiation on Human B Cells Based on Network-guided Random Forest

  • 摘要: 在空间环境中, 电离辐射可破坏细胞DNA和其他分子结构, 导致细胞突变或死亡, 增加癌症及其他疾病风险. 解析电离辐射对人类细胞的影响机制已成为航天医学领域亟待解决的问题. 近年来, 空间组学数据的大量累计以及生物信息学技术的发展为该问题的解决提供了可行途径. 本文使用网络引导随机森林(Network Guided Random Forest, NGF)算法研究人类B细胞对电离辐射的响应机制. 基于基因功能富集分析发现人类B细胞在经过大剂量电离辐射后难以对受损伤的DNA进行正常修复, 大量细胞发生凋亡或癌变. 基于cMap(Connectivity Map)数据库进行潜在抗电离辐射药物筛选, 结果显示紫杉醇和醉椒素等天然产物或可辅助人体抵抗电离辐射伤害. 研究结果将为空间环境对人体影响机制的解析奠定基础, 辅助开展航天员抗空间逆境策略研究.

     

  • 图  1  基于差异表达分析和NGF算法研究人B细胞 对电离辐射响应机制的方法流程

    Figure  1.  Flow chart of the method to study the response mechanism of human B cells to ionizing radiation based on differential expression analysis and network-guided random forest algorithm

    图  2  10 Gy电离辐射后2 h (a)和6 h (b) NGF重要性打分前100的基因差异可视化处理

    Figure  2.  Volcano plot of gene differential expression in the top 100 NGF importance scores 2 h (a) and 6 h (b) after 10 Gy ionizing radiation

    图  3  10 Gy电离辐射2 h后的GO分析(a)和KEGG分析(b)

    Figure  3.  GO (a) and KEGG (b) analysis after 2 hours of 10 Gy ionizing radiation

    图  4  10 Gy电离辐射6 h后的GO分析(a)和KEGG分析(b)

    Figure  4.  GO (a) and KEGG (b) analysis after 6 hours of 10 Gy ionizing radiation

    图  5  Ohnolog基因富集分析

    Figure  5.  Ohnolog gene enrichment analysis

    表  1  电离辐射响应重要基因起源分析

    Table  1.   Analysis of the origin of important genes in response to ionizing radiation

    基因起源阶段基因数P-value
    Cellular_organisms350.0424
    Euk_Archaea80.308
    Euk+Bac600.0101
    Eukaryota2290.000000819
    Eumetazoa1290.0949
    Mammalia301.00
    Opisthokonta300.0716
    Vertebrata481.00
    下载: 导出CSV

    表  2  基于cMap数据库筛选的抗辐射药物

    Table  2.   Anti-radiation drugs screened based on cMap database

    药物名称 P-value 药物疗效
    紫杉醇 0.00177 通过抑制微管网络的形成, 抑制肿瘤细胞增殖分裂
    阿苯达唑 0.00004 通过与蠕虫β–微管蛋白结合, 抑制其聚合或组装成微管
    利美索龙 0.00275 糖皮质激素受体激动剂治疗眼部炎症
    氯倍他索 0.00559 治疗硬皮病
    普萘洛尔 0.00641 肾上腺素受体拮抗剂, 治疗心律失常
    醉椒素 0.00703 抗惊厥, 治疗肌肉松弛
    下载: 导出CSV

    表  3  基于cMap数据库筛选的辐射增敏剂

    Table  3.   Radiation sensitizers screened based on cMap database

    药物名称P-value药物疗效
    莫诺苯宗0治疗黑色素沉积
    盐酸苯氧苄胺0治疗高血压和嗜铬细胞瘤
    依米丁0抑制蛋白质合成
    海恩酮0DNA合成抑制剂, 抗血吸虫
    依托泊苷0细胞周期特异性抗肿瘤药物, 作用于DNA拓扑异构酶Ⅱ
    三氟胸苷0可在DNA复制过程中使用, 阻止碱基对形成
    白藜芦醇0抗氧化、抗炎、抗癌及心血管保护等
    伊利替康0.00008由喜树碱制成, 可导致DNA损伤
    甲氨蝶呤0.00012抗叶酸类抗肿瘤药
    毒胡萝卜素0.00172诱导内质网应激反应性细胞凋亡
    洛莫司汀0.00422烷化剂类抗肿瘤药, 使DNA链断裂, 可通过血脑屏障
    下载: 导出CSV
  • [1] REYNOLDS R J, BUKHTIYAROV I V, TIKHONOVA G I, et al. Contrapositive logic suggests space radiation not having a strong impact on mortality of US astronauts and Soviet and Russian cosmonauts[J]. Scientific Reports, 2019, 9(1): 8583 doi: 10.1038/s41598-019-44858-0
    [2] NILSSON R, LIU N A. Nuclear DNA damages generated by reactive oxygen molecules (ROS) under oxidative stress and their relevance to human cancers, including ionizing radiation-induced neoplasia part I: physical, chemical and molecular biology aspects[J]. Radiation Medicine and Protection, 2020, 1(3): 140-152 doi: 10.1016/j.radmp.2020.09.002
    [3] ZHU M Q, YANG M D, ZHANG J J, et al. Immunogenic cell death induction by ionizing radiation[J]. Frontiers in Immunology, 2021, 12: 705361 doi: 10.3389/fimmu.2021.705361
    [4] HOLMBERG O, PINAK M. How often does it happen? A review of unintended, unnecessary and unavoidable high-dose radiation exposures[J]. Journal of Radiological Protection, 2021, 41(4): R189-R201 doi: 10.1088/1361-6498/ac0d64
    [5] LUMNICZKY K, IMPENS N, ARMENGOL G, et al. Low dose ionizing radiation effects on the immune system[J]. Environment International, 2021, 149: 106212 doi: 10.1016/j.envint.2020.106212
    [6] SPIELMANN G, AGHA N, KUNZ H, et al. B cell homeostasis is maintained during long-duration spaceflight[J]. Journal of Applied Physiology, 2019, 126(2): 469-476 doi: 10.1152/japplphysiol.00789.2018
    [7] PAUL A M, OVERBEY E G, DA SILVEIRA W A, et al. Immunological and hematological outcomes following protracted low dose/low dose rate ionizing radiation and simulated microgravity[J]. Scientific Reports, 2021, 11(1): 11452 doi: 10.1038/s41598-021-90439-5
    [8] GHOSH S, GHOSH A. Activation of DNA damage response signaling in mammalian cells by ionizing radiation[J]. Free Radical Research, 2021, 55(8): 814-827 doi: 10.1080/10715762.2021.1876853
    [9] ALHARBI F, VAKANSKI A. Machine learning methods for cancer classification using gene expression data: A review[J]. Bioengineering, 2023, 10(2): 173 doi: 10.3390/bioengineering10020173
    [10] LIU D F, ZHANG X H, ZHENG T, et al. Optimisation and evaluation of the random forest model in the efficacy prediction of chemoradiotherapy for advanced cervical cancer based on radiomics signature from high-resolution T2 weighted images[J]. Archives of Gynecology and Obstetrics, 2021, 303(3): 811-820 doi: 10.1007/s00404-020-05908-5
    [11] SIGALOVA O M, SHAEIRI A, FORNERIS M, et al. Predictive features of gene expression variation reveal mechanistic link with differential expression[J]. Molecular Systems Biology, 2020, 16(8): e9539 doi: 10.15252/msb.20209539
    [12] BRUGALETTA R, SANTORO A, ALISI A, et al. 1283 Gene expression analysis of blood cells in radiation health care workers occupationally exposed to ionising radiation[J]. Occupational :Times New Roman;">& Environmental Medicine, 2018, 75(S2): A428
    [13] SZKLARCZYK D, GABLE A L, NASTOU K C, et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucleic Acids Research, 2021, 49(D1): D605-D612 doi: 10.1093/nar/gkaa1074
    [14] LUO Y B, SUN F L, PENG X W, et al. Integrated bioinformatics analysis to identify abnormal methylated differentially expressed genes for predicting prognosis of human colon cancer[J]. International Journal of General Medicine, 2021, 14: 4745-4756 doi: 10.2147/IJGM.S324483
    [15] DEIST T M, DANKERS F J W M, VALDES G, et al. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers[J]. Medical Physics, 2018, 45(7): 3449-3459 doi: 10.1002/mp.12967
    [16] HONG S, LEE S, LEE J, et al. Prediction of cardiac arrest in the emergency department based on machine learning and sequential characteristics: model development and retrospective clinical validation study[J]. JMIR Medical Informatics, 2020, 8(8): e15932 doi: 10.2196/15932
    [17] GUPTA M, LIU X F, TERAOKA S N, et al. Genes affecting ionizing radiation survival identified through combined exome sequencing and functional screening[J]. Human Mutation, 2021, 42(9): 1124-1138 doi: 10.1002/humu.24241
    [18] DERLIN T, BOGDANOVA N, OHLENDORF F, et al. Assessment of γ-H2AX and 53BP1 foci in peripheral blood lymphocytes to predict subclinical hematotoxicity and response in somatostatin receptor-targeted radionuclide therapy for advanced gastroenteropancreatic neuroendocrine tumors[J]. Cancers, 2021, 13(7): 1516 doi: 10.3390/cancers13071516
    [19] JENSEN M K, PERS T H, DWORZYNSKI P, et al. Protein interaction-based genome-wide analysis of incident coronary heart disease[J]. Circulation: Cardiovascular Genetics, 2011, 4(5): 549-556 doi: 10.1161/CIRCGENETICS.111.960393
    [20] SU H, WANG G, ZHU X, XU M, AO P. Endogenous molecular-cellular network theory: A system-biomedical perspective towards complex diseases[J]. Chinese Journal of Nature, 2015, 37(6): 448-454.
    [21] WU Y D, BYRNE E M, ZHENG Z L, et al. Genome-wide association study of medication-use and associated disease in the UK Biobank[J]. Nature Communications, 2019, 10(1): 1891 doi: 10.1038/s41467-019-09572-5
    [22] SHARIFI-RAD J, QUISPE C, PATRA J K, et al. Paclitaxel: application in modern oncology and nanomedicine-based cancer therapy[J]. Oxidative Medicine and Cellular Longevity, 2021, 2021: 3687700 doi: 10.1155/2021/3687700
    [23] LIU X N, LI Z, LIU H, et al. Low concentration flufenamic acid enhances osteogenic differentiation of mesenchymal stem cells and suppresses bone loss by inhibition of the NF-κB signaling pathway[J]. Stem Cell Research :Times New Roman;">& Therapy, 2019, 10(1): 213
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  63
  • PDF下载量:  37
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-04-08
  • 修回日期:  2024-09-14
  • 网络出版日期:  2024-11-02

目录

    /

    返回文章
    返回