Mechanism of the Effect of Ionizing Radiation on Human B Cells Based on Network-guided Random Forest
-
摘要: 在空间环境中, 电离辐射可破坏细胞DNA和其他分子结构, 导致细胞突变或死亡, 增加癌症及其他疾病风险. 解析电离辐射对人类细胞的影响机制已成为航天医学领域亟待解决的问题. 近年来, 空间组学数据的大量累计以及生物信息学技术的发展为该问题的解决提供了可行途径. 本文使用网络引导随机森林(Network Guided Random Forest, NGF)算法研究人类B细胞对电离辐射的响应机制. 基于基因功能富集分析发现人类B细胞在经过大剂量电离辐射后难以对受损伤的DNA进行正常修复, 大量细胞发生凋亡或癌变. 基于cMap(Connectivity Map)数据库进行潜在抗电离辐射药物筛选, 结果显示紫杉醇和醉椒素等天然产物或可辅助人体抵抗电离辐射伤害. 研究结果将为空间环境对人体影响机制的解析奠定基础, 辅助开展航天员抗空间逆境策略研究.
-
关键词:
- 电离辐射 /
- 人类B细胞 /
- 网络引导随机森林算法 /
- 基因功能分析 /
- 药物筛选
Abstract: With the intensification of the problems of the Earth’s population, energy and ecological environment, space immigration may become a feasible solution. In the space environment, ionizing radiation will damage the DNA and other molecular structures of human cells, causing cell mutation or death, increasing the risk of cancer and other diseases. The mechanism of the effect of ionizing radiation on human cells has become an urgent problem in the field of space medicine. In recent years, a large amount of spatial omics data has accumulated, and the development of bioinformatics technology provides a feasible way to solve the above problems. In this study, the Network Guided Random Forest (NGF) algorithm was used to investigate the response mechanism of human B cells to ionizing radiation. Based on gene function enrichment analysis, it was found that human B cells could not repair the damaged DNA normally after high dose of ionizing radiation, and a large number of cells suffered apoptosis or cancer. In addition, screening of potential anti-ionizing radiation drugs based on the cMap (Connectivity Map) database showed that natural products such as paclitaxel and zonicin may assist the human body in resisting ionizing radiation damage. This paper will lay a foundation for the analysis of the influence mechanism of space environment on human beings, and help astronauts to study the strategies of resisting space adversity. -
表 1 电离辐射响应重要基因起源分析
Table 1. Analysis of the origin of important genes in response to ionizing radiation
基因起源阶段 基因数 P-value Cellular_organisms 35 0.0424 Euk_Archaea 8 0.308 Euk+Bac 60 0.0101 Eukaryota 229 0.000000819 Eumetazoa 129 0.0949 Mammalia 30 1.00 Opisthokonta 30 0.0716 Vertebrata 48 1.00 表 2 基于cMap数据库筛选的抗辐射药物
Table 2. Anti-radiation drugs screened based on cMap database
药物名称 P-value 药物疗效 紫杉醇 0.00177 通过抑制微管网络的形成, 抑制肿瘤细胞增殖分裂 阿苯达唑 0.00004 通过与蠕虫β–微管蛋白结合, 抑制其聚合或组装成微管 利美索龙 0.00275 糖皮质激素受体激动剂治疗眼部炎症 氯倍他索 0.00559 治疗硬皮病 普萘洛尔 0.00641 肾上腺素受体拮抗剂, 治疗心律失常 醉椒素 0.00703 抗惊厥, 治疗肌肉松弛 表 3 基于cMap数据库筛选的辐射增敏剂
Table 3. Radiation sensitizers screened based on cMap database
药物名称 P-value 药物疗效 莫诺苯宗 0 治疗黑色素沉积 盐酸苯氧苄胺 0 治疗高血压和嗜铬细胞瘤 依米丁 0 抑制蛋白质合成 海恩酮 0 DNA合成抑制剂, 抗血吸虫 依托泊苷 0 细胞周期特异性抗肿瘤药物, 作用于DNA拓扑异构酶Ⅱ 三氟胸苷 0 可在DNA复制过程中使用, 阻止碱基对形成 白藜芦醇 0 抗氧化、抗炎、抗癌及心血管保护等 伊利替康 0.00008 由喜树碱制成, 可导致DNA损伤 甲氨蝶呤 0.00012 抗叶酸类抗肿瘤药 毒胡萝卜素 0.00172 诱导内质网应激反应性细胞凋亡 洛莫司汀 0.00422 烷化剂类抗肿瘤药, 使DNA链断裂, 可通过血脑屏障 -
[1] REYNOLDS R J, BUKHTIYAROV I V, TIKHONOVA G I, et al. Contrapositive logic suggests space radiation not having a strong impact on mortality of US astronauts and Soviet and Russian cosmonauts[J]. Scientific Reports, 2019, 9(1): 8583 doi: 10.1038/s41598-019-44858-0 [2] NILSSON R, LIU N A. Nuclear DNA damages generated by reactive oxygen molecules (ROS) under oxidative stress and their relevance to human cancers, including ionizing radiation-induced neoplasia part I: physical, chemical and molecular biology aspects[J]. Radiation Medicine and Protection, 2020, 1(3): 140-152 doi: 10.1016/j.radmp.2020.09.002 [3] ZHU M Q, YANG M D, ZHANG J J, et al. Immunogenic cell death induction by ionizing radiation[J]. Frontiers in Immunology, 2021, 12: 705361 doi: 10.3389/fimmu.2021.705361 [4] HOLMBERG O, PINAK M. How often does it happen? A review of unintended, unnecessary and unavoidable high-dose radiation exposures[J]. Journal of Radiological Protection, 2021, 41(4): R189-R201 doi: 10.1088/1361-6498/ac0d64 [5] LUMNICZKY K, IMPENS N, ARMENGOL G, et al. Low dose ionizing radiation effects on the immune system[J]. Environment International, 2021, 149: 106212 doi: 10.1016/j.envint.2020.106212 [6] SPIELMANN G, AGHA N, KUNZ H, et al. B cell homeostasis is maintained during long-duration spaceflight[J]. Journal of Applied Physiology, 2019, 126(2): 469-476 doi: 10.1152/japplphysiol.00789.2018 [7] PAUL A M, OVERBEY E G, DA SILVEIRA W A, et al. Immunological and hematological outcomes following protracted low dose/low dose rate ionizing radiation and simulated microgravity[J]. Scientific Reports, 2021, 11(1): 11452 doi: 10.1038/s41598-021-90439-5 [8] GHOSH S, GHOSH A. Activation of DNA damage response signaling in mammalian cells by ionizing radiation[J]. Free Radical Research, 2021, 55(8): 814-827 doi: 10.1080/10715762.2021.1876853 [9] ALHARBI F, VAKANSKI A. Machine learning methods for cancer classification using gene expression data: A review[J]. Bioengineering, 2023, 10(2): 173 doi: 10.3390/bioengineering10020173 [10] LIU D F, ZHANG X H, ZHENG T, et al. Optimisation and evaluation of the random forest model in the efficacy prediction of chemoradiotherapy for advanced cervical cancer based on radiomics signature from high-resolution T2 weighted images[J]. Archives of Gynecology and Obstetrics, 2021, 303(3): 811-820 doi: 10.1007/s00404-020-05908-5 [11] SIGALOVA O M, SHAEIRI A, FORNERIS M, et al. Predictive features of gene expression variation reveal mechanistic link with differential expression[J]. Molecular Systems Biology, 2020, 16(8): e9539 doi: 10.15252/msb.20209539 [12] BRUGALETTA R, SANTORO A, ALISI A, et al. 1283 Gene expression analysis of blood cells in radiation health care workers occupationally exposed to ionising radiation[J]. Occupational :Times New Roman;">& Environmental Medicine, 2018, 75(S2): A428 [13] SZKLARCZYK D, GABLE A L, NASTOU K C, et al. The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucleic Acids Research, 2021, 49(D1): D605-D612 doi: 10.1093/nar/gkaa1074 [14] LUO Y B, SUN F L, PENG X W, et al. Integrated bioinformatics analysis to identify abnormal methylated differentially expressed genes for predicting prognosis of human colon cancer[J]. International Journal of General Medicine, 2021, 14: 4745-4756 doi: 10.2147/IJGM.S324483 [15] DEIST T M, DANKERS F J W M, VALDES G, et al. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers[J]. Medical Physics, 2018, 45(7): 3449-3459 doi: 10.1002/mp.12967 [16] HONG S, LEE S, LEE J, et al. Prediction of cardiac arrest in the emergency department based on machine learning and sequential characteristics: model development and retrospective clinical validation study[J]. JMIR Medical Informatics, 2020, 8(8): e15932 doi: 10.2196/15932 [17] GUPTA M, LIU X F, TERAOKA S N, et al. Genes affecting ionizing radiation survival identified through combined exome sequencing and functional screening[J]. Human Mutation, 2021, 42(9): 1124-1138 doi: 10.1002/humu.24241 [18] DERLIN T, BOGDANOVA N, OHLENDORF F, et al. Assessment of γ-H2AX and 53BP1 foci in peripheral blood lymphocytes to predict subclinical hematotoxicity and response in somatostatin receptor-targeted radionuclide therapy for advanced gastroenteropancreatic neuroendocrine tumors[J]. Cancers, 2021, 13(7): 1516 doi: 10.3390/cancers13071516 [19] JENSEN M K, PERS T H, DWORZYNSKI P, et al. Protein interaction-based genome-wide analysis of incident coronary heart disease[J]. Circulation: Cardiovascular Genetics, 2011, 4(5): 549-556 doi: 10.1161/CIRCGENETICS.111.960393 [20] SU H, WANG G, ZHU X, XU M, AO P. Endogenous molecular-cellular network theory: A system-biomedical perspective towards complex diseases[J]. Chinese Journal of Nature, 2015, 37(6): 448-454. [21] WU Y D, BYRNE E M, ZHENG Z L, et al. Genome-wide association study of medication-use and associated disease in the UK Biobank[J]. Nature Communications, 2019, 10(1): 1891 doi: 10.1038/s41467-019-09572-5 [22] SHARIFI-RAD J, QUISPE C, PATRA J K, et al. Paclitaxel: application in modern oncology and nanomedicine-based cancer therapy[J]. Oxidative Medicine and Cellular Longevity, 2021, 2021: 3687700 doi: 10.1155/2021/3687700 [23] LIU X N, LI Z, LIU H, et al. Low concentration flufenamic acid enhances osteogenic differentiation of mesenchymal stem cells and suppresses bone loss by inhibition of the NF-κB signaling pathway[J]. Stem Cell Research :Times New Roman;">& Therapy, 2019, 10(1): 213 -
-