留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁陀星 X 射线偏振模型与观测结果

陈伟 谢斐 葛明玉

陈伟, 谢斐, 葛明玉. 磁陀星 X 射线偏振模型与观测结果[J]. 空间科学学报, 2025, 45(2): 588-600. doi: 10.11728/cjss2025.02.2024-0139
引用本文: 陈伟, 谢斐, 葛明玉. 磁陀星 X 射线偏振模型与观测结果[J]. 空间科学学报, 2025, 45(2): 588-600. doi: 10.11728/cjss2025.02.2024-0139
CHEN Wei, XIE Fei, GE Mingyu. X-ray Polarization Model and Observational Results of Magnetars (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 588-600 doi: 10.11728/cjss2025.02.2024-0139
Citation: CHEN Wei, XIE Fei, GE Mingyu. X-ray Polarization Model and Observational Results of Magnetars (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 588-600 doi: 10.11728/cjss2025.02.2024-0139

磁陀星 X 射线偏振模型与观测结果

doi: 10.11728/cjss2025.02.2024-0139 cstr: 32142.14.cjss.2024-0139
基金项目: 国家重点研发计划项目 (2023YFE0117200), 国家自然科学基金面上项目 (12373041), 国家自然科学基金优秀青年科学基金项目 (12422306)和广西特聘教授专项基金项目 (八桂学者) 共同资助
详细信息
    作者简介:
    • 陈伟 男, 2000年9月出生于广西壮族自治区北海市, 现为广西大学物理科学与工程技术学院研究生. 主要研究方向为X射线天体物理研究. E-mail: chenwgxu@st.gxu.edu.cn
    通讯作者:
    • 谢斐 女, 1989年11月出生于江西省宜春市, 现为广西大学物理科学与工程技术学院教授, 博士生导师, 主要研究方向为X射线偏振探测技术和X射线天体物理研究. E-mail: xief@gxu.edu.cn
  • 中图分类号: P141.4

X-ray Polarization Model and Observational Results of Magnetars

  • 摘要: 磁陀星是磁场高达 1010~1011 T 的中子星, 与普通脉冲星的性质有极大不同. 磁陀星一般与超新星遗迹成协, 存在很强的活动性, 是研究极端天体性质的重要对象, 也是快速射电暴的一种对应体. 磁陀星的磁场结构及活动能量起源一直是磁陀星研究的核心问题, 因此偏振观测信息对理解其性质具有重要意义. 自成像型 X 射线偏振望远镜(IXPE)观测运行以来, 已经对 4U 0142+61, SGR 1806-20, 1RXS J170849.0-400910 和 1E 2259+586 四颗磁陀星进行深度曝光观测, X 射线偏振信息可以加深对磁陀星的认识, 对磁陀星辐射模型做出验证和限制. 本文对这四颗磁陀星的观测结果进行了综合分析, 并将观测结果与主要的磁陀星模型, 即旋转矢量模型、共振康普顿模型和真空共振模型结合进行了讨论.

     

  • 图  1  光与物质发生光电效应作用截面

    Figure  1.  Cross-section of the photoelectric effect between light and matter

    图  2  脉冲星的模型天球上显示的圆环代表了辐射束的投影. AB 弧线表示视线在天球上形成的投影. 红色实线代表扭曲的偶极场

    Figure  2.  Pulsar model diagram, where the circle represents the projection of the radiation beam on the celestial sphere. The arc AB is the projection of the line of sight on the celestial sphere. The solid red line represents a twisted dipole field

    图  3  在几何参数为 α = 30°, β = 20°, ζ = 65°, 扭曲参数n = 0.5下的偏振位置角随脉冲相位的变化

    Figure  3.  Variation diagram of the polarization position angle with the pulse phase under the geometric parameters of α = 30°, β = 20°, ζ = 65°and twist parameter n = 0.5

    图  4  光子模式的偏振参数(a)和折射率(b)随真空共振附近密度的变化, 其中B =1010 T, E=1 keV, 电子分数 $ {{Y}_{\mathrm{e}}=Z/A=1 }$, 磁场与波矢的夹角 ${ {\theta }_{\mathrm{B}}=45° }$

    Figure  4.  Polarization parameters (a) and refractive indices (b) of photon modes as functions of density near the vacuum resonance for B =1010 T, E=1 keV, electron fraction $ {{Y}_{\mathrm{e}}=Z/A=1 }$, and the angle between the magnetic field and the wave vector ${ {\theta }_{\mathrm{B}}=45° }$

    图  5  1E 2259+586 的计数率随相位演化. 不同相位的区域划分及命名与文献[48]一致

    Figure  5.  Count rate of 1E 2259+586 evolves with the phase. The division and naming of the phase analysis region are consistent with those in Ref. [48]

    表  1  IXPE 望远镜的主要性能参

    Table  1.   IXPE main parameters

    参数 数值
    工作能段 2~8 keV
    视场 (12.9′ )2
    角分辨率 < 30″
    能谱分辨率 在 5.9 keV 约为 20%
    有效面积 每个探头在 4.5 keV 约为 200 cm2
    下载: 导出CSV

    表  2  IXPE 已观测报道的四颗磁陀星的基本信息

    Table  2.   Basical information about the four magnetars

    参数 4U 0142+61 1RXS J170849.0-400910 SGR 1806-20 1E 2259+586
    赤经 01h 46m 22s.407 17h 08m 46s.87 18h 08m 39s.337 23h 01m 08s.295
    赤纬 +61°45′ 03″ .19 –40°08′ 52″ .44 –20°24′ 39″ .85 +58°52′ 44″ .45
    距离/(kpc) 3.6 ± 0.4 3.8 ± 0.5 $ 8.7_{-1.5}^{+1.8} $ 3.2 ± 0.2
    磁场/(1010 T) 1.3 4.7 20 0.59
    周期/s 8.7 11.0 7.5 7.0
    周期导数/(10–11 s·s–1) 0.20 1.95 49.5 0.05
    X 射线流量 67.9 24.3 18 ± 1 14.1 ± 0.3
    偏振度/(%) 13.5 ± 0.8 [45] 35.1 ± 1.6 [46] 31.6 ± 10.5 [47] 5.6 ± 1.4 [48]
    能段/keV 2 ~ 8 2 ~ 8 4 ~ 5 2 ~ 8
      参数赤经、赤纬、距离、X射线流量信息来源于网站https://www.physics.mcgill.ca/~pulsar/magnetar/main.html#tab2%, 参数对应参考文献可在网站中进行查阅; 磁场、周期、周期导数信息来自参考文献[10]; 能段为偏振度结果对应能段; kpc为千秒差距. X射线流量单位: 10–15 W·m–2. 流量为2~10 keV能段下, 表格中对应距离下的结果.
    下载: 导出CSV
  • [1] KIM C M, KIM S P. Magnetars as laboratories for strong field QED[J]. AIP Conference Proceedings, 2024, 2874(1): 020013
    [2] KASPI V M, BELOBORODOV A M. Magnetars[J]. Annual Review of Astronomy and Astrophysics, 2017, 55: 261-301 doi: 10.1146/annurev-astro-081915-023329
    [3] HURLEY K. Soft gamma repeaters[J]. Advances in Space Research, 2011, 47(8): 1326-1331 doi: 10.1016/j.asr.2010.03.001
    [4] VAN PARADIJS J, TAAM R E, VAN DEN HEUVEL E P J. On the nature of the ‘anomalous’ 6-s X-ray pulsars[J]. Astronomy and Astrophysics, 1995, 299: L41
    [5] 吴鑫基, 乔国俊, 徐仁新. 脉冲星物理[M]. 北京: 北京大学出版社, 2018

    WU Xinji, QIAO Guojun, XU Renxin. Pulsar Physics[M]. Beijing: Peking University Press, 2018
    [6] LEWIN W, VAN DER KLIS M. Compact Stellar X-Ray Sources[M]. Cambridge: Cambridge University Press, 2006
    [7] THOMPSON C, DUNCAN R C. The soft gamma repeaters as very strongly magnetized neutron stars. II. quiescent neutrino, X-ray, and Alfvén wave emission[J]. The Astrophysical Journal, 1996, 473(1): 322-342 doi: 10.1086/178147
    [8] OLAUSEN S A, KASPI V M. The McGill magnetar catalog[J]. The Astrophysical Journal Supplement Series, 2014, 212(1): 6 doi: 10.1088/0067-0049/212/1/6
    [9] GROUP M P. McGill online magnetar catalog[EB/OL]. (2020-11-17)[2024-10-25]. https://www.physics.mcgill.ca/~pulsar/magnetar/main.html
    [10] DIB R, KASPI V M. 16 yr of RXTE monitoring of five anomalous X-ray pulsars[J]. The Astrophysical Journal, 2014, 784(1): 37 doi: 10.1088/0004-637X/784/1/37
    [11] GÜVER T, GÖĞÜŞ E, ÖZEL F. A magnetar strength surface magnetic field for the slowly spinning down SGR 0418+5729[J]. Monthly Notices of the Royal Astronomical Society, 2011, 418(4): 2773-2778 doi: 10.1111/j.1365-2966.2011.19677.x
    [12] KUMAR H S, SAFI-HARB S. Variability of the high magnetic field X-Ray pulsar PSR J1846–0258 associated with the supernova remnant Kes 75 as revealed by the Chandra X-Ray Observatory[J]. The Astrophysical Journal, 2008, 678(1): L43-L46 doi: 10.1086/588284
    [13] KUIPER L, HERMSEN W. High-energy characteristics of the schizophrenic pulsar PSR J1846-0258 in Kes 75. Multi-year RXTE and INTEGRAL observations crossing the magnetar-like outburst[J]. Astronomy and Astrophysics, 2009, 501(3): 1031-1046 doi: 10.1051/0004-6361/200811580
    [14] ARCHIBALD R F, KASPI V M, TENDULKAR S P, et al. A magnetar-like outburst from a high-B radio pulsar[J]. The Astrophysical Journal Letters, 2016, 829(1): L21 doi: 10.3847/2041-8205/829/1/L21
    [15] BOCHENEK C D, RAVI V, BELOV K V, et al. A fast radio burst associated with a Galactic magnetar[J]. Nature, 2020, 587(7832): 59-62 doi: 10.1038/s41586-020-2872-x
    [16] The CHIME/FRB Collaboration. A bright millisecond-duration radio burst from a Galactic magnetar[J]. Nature, 2020, 587(7832): 54-58 doi: 10.1038/s41586-020-2863-y
    [17] LI C K, LIN L, XIONG S L, et al. HXMT identification of a non-thermal X-ray burst from SGR J1935+2154 and with FRB 200428[J]. Nature Astronomy, 2021, 5(4): 378-384 doi: 10.1038/s41550-021-01302-6
    [18] MEREGHETTI S, SAVCHENKO V, FERRIGNO C, et al. INTEGRAL discovery of a burst with associated radio emission from the magnetar SGR 1935+2154[J]. The Astrophysical Journal Letters, 2020, 898(2): L29 doi: 10.3847/2041-8213/aba2cf
    [19] RIDNAIA A, SVINKIN D, FREDERIKS D, et al. A peculiar hard X-ray counterpart of a Galactic fast radio burst[J]. Nature Astronomy, 2021, 5(4): 372-377 doi: 10.1038/s41550-020-01265-0
    [20] TAVANI M, CASENTINI C, URSI A, et al. An X-ray burst from a magnetar enlightening the mechanism of fast radio bursts[J]. Nature Astronomy, 2021, 5(4): 401-407 doi: 10.1038/s41550-020-01276-x
    [21] ZHONG S Q, DAI Z G, ZHANG H M, et al. On the Distance of SGR 1935+2154 Associated with FRB 200428 and Hosted in SNR G57.2+0.8[J]. The Astrophysical Journal Letters, 2020, 898(1): L5 doi: 10.3847/2041-8213/aba262
    [22] The CHIME/FRB Collaboration, ANDERSEN B C, BANDURA K, et al. Sub-second periodicity in a fast radio burst[J]. Nature, 2022, 607(7918): 256-259 doi: 10.1038/s41586-022-04841-8
    [23] PELLICIARI D, BERNARDI G, PILIA M, et al. The Northern Cross Fast Radio Burst project. III. The FRB-magnetar connection in a sample of nearby galaxies[J]. Astronomy and Astrophysics, 2023, 674: A223 doi: 10.1051/0004-6361/202346307
    [24] HU C P, NARITA T, ENOTO T, et al. Rapid spin changes around a magnetar fast radio burst[J]. Nature, 2024, 626(7999): 500-504 doi: 10.1038/s41586-023-07012-5
    [25] DESVIGNES G, WELTEVREDE P, GAO Y, et al. A freely precessing magnetar following an X-ray outburst[J]. Nature Astronomy, 2024, 8(5): 617-627 doi: 10.1038/s41550-024-02226-7
    [26] HARDING A K, LAI D. Physics of strongly magnetized neutron stars[J]. Reports on Progress in Physics, 2006, 69(9): 2631-2708 doi: 10.1088/0034-4885/69/9/R03
    [27] LAI D, HO W C G. Polarized X-ray emission from magnetized neutron stars: signature of strong-field vacuum polarization[J]. Physical Review Letters, 2003, 91(7): 071101 doi: 10.1103/PhysRevLett.91.071101
    [28] TAVERNA R, TUROLLA R. X-ray polarization from magnetar sources[J]. Galaxies, 2024, 12(1): 6 doi: 10.3390/galaxies12010006
    [29] DEININGER W D, KALINOWSKI W, MASCIARELLI J, et al. IXPE mission system concept and development status[C]//2019 IEEE Aerospace Conference. Big Sky: IEEE, 2019: 1-15
    [30] WEISSKOPF M C, SOFFITTA P, BALDINI L, et al. The imaging X-ray polarimetry explorer (IXPE): pre-launch[J]. Journal of Astronomical Telescopes, Instruments, and Systems, 2022, 8(2): 026002
    [31] SOFFITTA P, BALDINI L, BELLAZZINI R, et al. The instrument of the imaging x-ray polarimetry explorer[J]. The Astronomical Journal, 2021, 162(5): 208 doi: 10.3847/1538-3881/ac19b0
    [32] BALDINI L, BARBANERA M, BELLAZZINI R, et al. Design, construction, and test of the Gas Pixel Detectors for the IXPE mission[J]. Astroparticle Physics, 2021, 133: 102628 doi: 10.1016/j.astropartphys.2021.102628
    [33] MULERI F. Analysis of the data from photoelectric gas polarimeters[M]//BAMBI C, SANTANGELO A. Handbook of X-Ray and Gamma-Ray Astrophysics. Singapore: Springer, 2022: 1-23
    [34] XIE F, DI MARCO A, LA MONACA F, et al. Vela pulsar wind nebula X-rays are polarized to near the synchrotron limit[J]. Nature, 2022, 612(7941): 658-660 doi: 10.1038/s41586-022-05476-5
    [35] MARIN F, CHURAZOV E, KHABIBULLIN I, et al. X-ray polarization evidence for a 200-year-old flare of Sgr A[J]. Nature, 2023, 619(7968): 41-45
    [36] LIODAKIS I, MARSCHER A P, AGUDO I, et al. Polarized blazar X-rays imply particle acceleration in shocks[J]. Nature, 2022, 611(7937): 677-681 doi: 10.1038/s41586-022-05338-0
    [37] DOROSHENKO V, POUTANEN J, TSYGANKOV S S, et al. Determination of X-ray pulsar geometry with IXPE polarimetry[J]. Nature Astronomy, 2022, 6(12): 1433-1443 doi: 10.1038/s41550-022-01799-5
    [38] KRAWCZYNSKI H, MULERI F, DOVČIAK M, et al. Polarized X-rays constrain the disk-jet geometry in the black hole X-ray binary Cygnus X-1[J]. Science, 2022, 378(6620): 650-654 doi: 10.1126/science.add5399
    [39] MARRA L, BRIGITTE M, RODRIGUEZ CAVERO N, et al. IXPE observation confirms a high spin in the accreting black hole 4U 1957+115[J]. Astronomy and Astrophysics, 2024, 684: A95 doi: 10.1051/0004-6361/202348277
    [40] VELEDINA A, MULERI F, POUTANEN J, et al. Cygnus X-3 revealed as a Galactic ultraluminous X-ray source by IXPE[J]. Nature Astronomy, 2024, 8: 1031-1046 doi: 10.1038/s41550-024-02294-9
    [41] 李红. 基于光电效应的天文X射线偏振测量方法及仪器研究[D]. 北京: 清华大学, 2016

    LI Hong. Study and Development of the Technique and Detector for Astronomical X-Ray Polarimetry Based on Photoelectric Effect[D]. Beijing: Tsinghua University, 2016
    [42] COSTA E, SOFFITTA P, BELLAZZINI R, et al. An efficient photoelectric X-ray polarimeter for the study of black holes and neutron stars[J]. Nature, 2001, 411(6838): 662-665 doi: 10.1038/35079508
    [43] LA MONACA F, XIE F, SOFFITTA P, et al. A possibility to extend the IXPE energy band[C]//Space Telescopes and Instrumentation 2022: Ultraviolet to Gamma Ray. Montréal: SPIE Astronomical Telescopes + Instrumentation, 2022: 121811D
    [44] GONZÁLEZ CANIULEF D, ZANE S, TAVERNA R, et al. Polarized thermal emission from X-ray dim isolated neutron stars: the case of RX J1856.5−3754[J]. Monthly Notices of the Royal Astronomical Society, 2016, 459(4): 3585-3595 doi: 10.1093/mnras/stw804
    [45] TAVERNA R, TUROLLA R, MULERI F, et al. Polarized X-rays from a magnetar[J]. Science, 2022, 378(6620): 646-650 doi: 10.1126/science.add0080
    [46] ZANE S, TAVERNA R, GONZÁLEZ–CANIULEF D, et al. A strong X-ray polarization signal from the magnetar 1RXS J170849.0-400910[J]. The Astrophysical Journal Letters, 2023, 944(2): L27 doi: 10.3847/2041-8213/acb703
    [47] TUROLLA R, TAVERNA R, ISRAEL G L, et al. IXPE and XMM-Newton observations of the soft gamma repeater SGR 1806–20[J]. The Astrophysical Journal, 2023, 954(1): 88 doi: 10.3847/1538-4357/aced05
    [48] HEYL J, TAVERNA R, TUROLLA R, et al. The detection of polarized X-ray emission from the magnetar 1E 2259+586[J]. Monthly Notices of the Royal Astronomical Society, 2024, 527(4): 12219-12231
    [49] TAVERNA R, MULERI F, TUROLLA R, et al. Probing magnetar magnetosphere through X-ray polarization measurements[J]. Monthly Notices of the Royal Astronomical Society, 2014, 438(2): 1686-1697 doi: 10.1093/mnras/stt2310
    [50] HEYL J S, SHAVIV N J. QED and the high polarization of the thermal radiation from neutron stars[J]. Physical Review D, 2002, 66(2): 023002 doi: 10.1103/PhysRevD.66.023002
    [51] RADHAKRISHNAN V, COOKE D J. Magnetic poles and the polarization structure of pulsar radiation[J]. Astrophysical Letters, 1969, 3: 225-229
    [52] THOMPSON C, LYUTIKOV M, KULKARNI S R. Electrodynamics of magnetars: implications for the persistent X-ray emission and spin-down of the soft gamma repeaters and anomalous X-ray pulsars[J]. The Astrophysical Journal, 2002, 574(1): 332-355 doi: 10.1086/340586
    [53] TONG H, WANG P F, WANG H G, et al. Rotating vector model for magnetars[J]. Monthly Notices of the Royal Astronomical Society, 2021, 502(1): 1549-1556 doi: 10.1093/mnras/stab108
    [54] TONG H. Large polar caps for twisted magnetosphere of magnetars[J]. Monthly Notices of the Royal Astronomical Society, 2019, 489(3): 3769-3777
    [55] SCHWARM F W, BALLHAUSEN R, FALKNER S, et al. Cyclotron resonant scattering feature simulations II. Description of the CRSF simulation process[J]. Astronomy :Times New Roman;">& Astrophysics, 2017, 601: A99
    [56] FOMIN P I, KHOLODOV R I. Resonance Compton scattering in an external magnetic field[J]. Journal of Experimental and Theoretical Physics, 2000, 90(2): 281-286 doi: 10.1134/1.559101
    [57] REA N, ZANE S, TUROLLA R, et al. Resonant cyclotron scattering in Magnetars’ emission[J]. The Astrophysical Journal, 2008, 686(2): 1245-1260 doi: 10.1086/591264
    [58] CAIAZZO I, GONZÁLEZ-CANIULEF D, HEYL J, et al. Probing magnetar emission mechanisms with X-ray spectropolarimetry[J]. Monthly Notices of the Royal Astronomical Society, 2021, 514(4): 5024-5034
    [59] MÉSZÁROS P. High-Energy Radiation from Magnetized Neutron Stars[M]. Chicago: University of Chicago Press, 1992
    [60] TAVERNA R, TUROLLA R, ZANE S, et al. Polarized emission from strongly magnetized sources[J]. Proceedings of the International Astronomical Union, 2020, 16(S363): 276-279 doi: 10.1017/S174392132200028X
    [61] LAI D, HO W C G. Resonant conversion of photon modes due to vacuum polarization in a magnetized plasma: implications for X-ray emission from magnetars[J]. The Astrophysical Journal, 2002, 566(1): 373-377 doi: 10.1086/338074
    [62] LAI D. IXPE detection of polarized X-rays from magnetars and photon mode conversion at QED vacuum resonance[J]. Proceedings of the National Academy of Sciences, 2023, 120(17): e2216534120 doi: 10.1073/pnas.2216534120
    [63] KELLY R M E, ZANE S, TUROLLA R, et al. X-ray polarization in magnetar atmospheres – effects of mode conversion[J]. Monthly Notices of the Royal Astronomical Society, 2024, 528(3): 3927-3940 doi: 10.1093/mnras/stae159
    [64] WANG Z X, CHAKRABARTY D, KAPLAN D L. A debris disk around an isolated young neutron star[J]. Nature, 2006, 440(7085): 772-775 doi: 10.1038/nature04669
    [65] ERTAN Ü, ERKUT M H, EKŞI K Y, et al. The anomalous X-ray pulsar 4U 0142+61: a neutron star with a gaseous fallback disk[J]. The Astrophysical Journal, 2007, 657(1): 441 doi: 10.1086/510303
    [66] TONG H, WANG W, LIU X W, et al. Rotational evolution of magnetars in the presence of a fallback disk[J]. The Astrophysical Journal, 2016, 833(2): 265 doi: 10.3847/1538-4357/833/2/265
    [67] GRIMANI C. Clues from 4U 0142+61 on supernova fallback disc formation and precession[J]. Monthly Notices of the Royal Astronomical Society, 2021, 507(1): 261-266 doi: 10.1093/mnras/stab2078
    [68] KASPI V M, LACKEY J R, CHAKRABARTY D. A glitch in an anomalous X-ray pulsar[J]. The Astrophysical Journal, 2000, 537(1): L31-L34 doi: 10.1086/312758
    [69] DALL’OSSO S, ISRAEL G L, STELLA L, et al. The glitches of the anomalous X-ray pulsar 1RXS J170849.0-400910[J]. The Astrophysical Journal, 2003, 599(1): 485-497 doi: 10.1086/379213
    [70] SCHOLZ P, ARCHIBALD R F, KASPI V M, et al. On the X-ray variability of magnetar 1RXS J170849.0−400910[J]. The Astrophysical Journal, 2014, 783(2): 99 doi: 10.1088/0004-637X/783/2/99
    [71] VAN ADELSBERG M, PERNA R. Soft X-ray polarization in thermal magnetar emission[J]. Monthly Notices of the Royal Astronomical Society, 2009, 399(3): 1523-1533 doi: 10.1111/j.1365-2966.2009.15374.x
    [72] WOODS P M, KOUVELIOTOU C, FINGER M H, et al. The prelude to and aftermath of the giant flare of 2004 December 27: persistent and pulsed X-ray properties of SGR 1806-20 from 1993 to 2005[J]. The Astrophysical Journal, 2007, 654(1): 470-486 doi: 10.1086/507459
    [73] HURLEY K, BOGGS S E, SMITH D M, et al. An exceptionally bright flare from SGR 1806-20 and the origins of short-duration γ-ray bursts[J]. Nature, 2005, 434(7037): 1098-1103 doi: 10.1038/nature03519
    [74] FEROCI M, FRONTERA F, COSTA E, et al. A giant outburst from SGR 1900+14 observed with the BeppoSAX Gamma-ray burst monitor[J]. The Astrophysical Journal, 1999, 515(1): L9-L12 doi: 10.1086/311964
    [75] MAZETS E P, GOLENETSKII S V, IL'INSKII V N, et al. Observations of a flaring X-ray pulsar in Dorado[J]. Nature, 1979, 282(5739): 587-589 doi: 10.1038/282587a0
    [76] CHAND V, JOSHI J C, GUPTA R, et al. Magnetar giant flare originating from GRB 200415A: transient GeV emission, time-resolved Ep–Liso correlation and implications[J]. Research in Astronomy and Astrophysics, 2021, 21(9): 236 doi: 10.1088/1674-4527/21/9/236
    [77] MINAEV P Y, POZANENKO A S, GREBENEV S A, et al. GRB 231115A—a magnetar giant flare in the M82 galaxy[J]. Astronomy Letters, 2024, 50(1): 1-24 doi: 10.1134/S1063773724600152
    [78] KASPI V M, GAVRIIL F P, WOODS P M, et al. A major soft gamma repeater-like outburst and rotation glitch in the no-longer-so-anomalous X-ray pulsar 1E 2259+586[J]. The Astrophysical Journal, 2003, 588(2): L93-L96 doi: 10.1086/375683
    [79] ARCHIBALD R F, KASPI V M, NG C Y, et al. An anti-glitch in a magnetar[J]. Nature, 2013, 497(7451): 591-593 doi: 10.1038/nature12159
    [80] PIZZOCARO D, TIENGO A, MEREGHETTI S, et al. Detailed X-ray spectroscopy of the magnetar 1E 2259+586[J]. Astronomy and Astrophysics, 2019, 626: A39 doi: 10.1051/0004-6361/201834784
    [81] PENG H L, GE M Y, WENG S S, et al. Polarized X-rays detected from the anomalous X-ray pulsar 1E 2259+586[J]. The Astrophysical Journal, 2024, 961(1): 106 doi: 10.3847/1538-4357/ad1512
    [82] TIENGO A, ESPOSITO P, MEREGHETTI S, et al. A variable absorption feature in the X-ray spectrum of a magnetar[J]. Nature, 2013, 500(7462): 312-314 doi: 10.1038/nature12386
    [83] ZHANG S N, SANTANGELO A, FEROCI M, et al. The enhanced X-ray Timing and Polarimetry mission—eXTP[J]. Science China Physics, Mechanics & Astronomy, 2019, 62(2): 29502
    [84] SANTANGELO A, ZANE S, FENG H, et al. Physics and astrophysics of strong magnetic field systems with eXTP[J]. Science China Physics, Mechanics & Astronomy, 2019, 62(2): 29505
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  291
  • HTML全文浏览量:  113
  • PDF下载量:  29
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-10-28
  • 修回日期:  2024-12-10
  • 网络出版日期:  2025-02-14

目录

    /

    返回文章
    返回