留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于环路热虹吸管的浸没式液冷实验

王禹 马祥 张永海 魏进家

王禹, 马祥, 张永海, 魏进家. 基于环路热虹吸管的浸没式液冷实验[J]. 空间科学学报, 2025, 45(2): 468-476. doi: 10.11728/cjss2025.02.2024-0140
引用本文: 王禹, 马祥, 张永海, 魏进家. 基于环路热虹吸管的浸没式液冷实验[J]. 空间科学学报, 2025, 45(2): 468-476. doi: 10.11728/cjss2025.02.2024-0140
WANG Yu, MA Xiang, ZHANG Yonghai, WEI Jinjia. Experimental of Submerged Liquid Cooling Based on Loop Thermosiphon (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 468-476 doi: 10.11728/cjss2025.02.2024-0140
Citation: WANG Yu, MA Xiang, ZHANG Yonghai, WEI Jinjia. Experimental of Submerged Liquid Cooling Based on Loop Thermosiphon (in Chinese). Chinese Journal of Space Science, 2025, 45(2): 468-476 doi: 10.11728/cjss2025.02.2024-0140

基于环路热虹吸管的浸没式液冷实验

doi: 10.11728/cjss2025.02.2024-0140 cstr: 32142.14.cjss.2024-0140
基金项目: 国家重点研发计划项目(2022YFF0503502), 西安交通大学青年创新团队项目(xtr052022011)和西安交通大学青年拔尖人才支持计划项目共同资助
详细信息
    作者简介:
    • 王禹 男, 2000年生, 西安交通大学化学工程与技术学院硕士研究生, 主要研究方向为浸没式相变热管理. E-mail: wy314509@stu.xjtu.edu.cn
    通讯作者:
    • 张永海 男, 1986年生, 教授, 博士生导师, 国家级青年人才, 主要研究方向为功率器件热管理技术开发与理论研究. E-mail: zyh002@xjtu.edu.cn
  • 中图分类号: TK124

Experimental of Submerged Liquid Cooling Based on Loop Thermosiphon

  • 摘要: 将环路热虹吸管与服务器散热相结合, 设计并加工出一种用于模拟服务器液冷的循环冷却系统. 以HFE-7100作为工质, 研究不同加热功率下服务器模拟热启动问题, 并探讨不同注液率、汽路绝热段长度(箱体与冷凝器的高度差)对循环系统传热特性的影响. 此外还对实验过程中汽路内的流动状态进行了分析. 研究结果表明, 在低加热功率下(90~120 W), 服务器箱体温度会出现先升高后降低随后逐渐平稳的现象, 而高加热功率下(≥150 W)则会出现箱体温度先快速升高然后缓慢升高随后逐渐平稳的现象. 热启动过程中的现象可以分为3个阶段. 第1阶段为过冷至蒸发, 第2阶段循环系统初步建立, 第3阶段系统循环完全建立. 其中第2阶段热启动箱体最高温度会随着加热功率的增加而逐渐降低, 系统达到稳定循环的时间会随着加热功率的增加而增加. 此外, 注液率从65%增加到85%时, 系统压差(箱体及储液箱内的压强差)提高34.7%, 但是冷凝器效率降低, 其出口过冷度会降低47.4%; 当汽路绝热段长度从40 cm增加到80 cm时, 系统压差提高26.6%, 冷凝器效率提升, 其出口过冷度提高120.6%.

     

  • 图  1  实验装置工作原理

    Figure  1.  Fundamentals of the experimental apparatus

    图  2  不同加热功率下环路热虹吸管的热启动特性

    Figure  2.  Thermal starting characteristics of loop thermosiphon under different heating power

    图  3  不同功率下的汽路热阻

    Figure  3.  Thermal resistance of gas path under different power

    图  4  注液率和绝热段长度对压强的影响

    Figure  4.  Effect of injection rate and length of adiabatic section on pressure

    图  5  85%注液率时不同加热功率下汽路内的流型转变

    Figure  5.  Change of flow pattern in steam path under different heating power at 85% injection rate

    图  6  注液率对冷凝器出口过冷度的影响

    Figure  6.  Effect of liquid injection rate on the liquid subcooling at the condenser outlet

    图  7  绝热段长度对冷凝器出口过冷度的影响

    Figure  7.  Effect of adiabatic section length on the liquid subcooling at the condenser outlet

    表  1  实验装置尺寸

    Table  1.   Size of the experimental device

    设备名称 尺寸
    箱体 140 mm×120 mm×44.45 mm
    储液箱 120 mm×120 mm×150 mm
    管路 1000 mm×10 mm×6.5 mm
    冷凝器 180 mm×160 mm×60 mm
    下载: 导出CSV

    表  2  HFE-7100物性参数

    Table  2.   Physical properties of HFE-7100

    物性参数HFE-7100
    沸点/℃61
    液体密度/(kg·m–3)1372
    比热容/(J·kg–1·K–1)1094
    表面张力/(mN·m–1)10
    蒸汽密度/(kg·m–3)9.58
    导热系数/(W·m–1·K–1)0.062
    汽化潜热/(kJ·kg–1)111.6
    动力黏度/(kg·m–1·s–1)3.61×10–4
    下载: 导出CSV

    表  3  实验设备性能参数

    Table  3.   Main performance parameters of the experimental equipment

    设备名称测量范围误差
    T型热电偶/℃0~500±0.5
    NI测温模块/℃0~300±0.3
    直流电源/V0~350±0.5
    压力传感器/kPa0~250±0.25
    NI测压模块/kPa0~250±0.25
    高速摄像机/(frame·s–1)10000
    下载: 导出CSV
  • [1] 董新伟, 耿永伟, 郝亮. 不同气候区数据中心用间接蒸发冷却空调的耗能分析[J]. 暖通空调, 2023, 53(8): 171-176

    DONG Xinwei, GENG Yongwei, HAO Liang. Energy consumption analysis of indirect evaporative cooling air conditioning for data centers in different climate zones[J]. Heating Ventilating :Times New Roman;">& Air Conditioning, 2023, 53(8): 171-176
    [2] 郭丰, 王娟. 通过团体标准建设工作推动数据中心液冷技术发展及应用的探索[J]. 中国标准化, 2020(8): 173-176

    GUO Feng, WANG Juan. Promoting the development and application of liquid cooling technology in data center through association standards development[J]. China Standardization, 2020(8): 173-176
    [3] 张呈平, 郭勤, 贾晓卿, 等. 数据中心用浸没式冷却液的研究进展[J]. 精细化工, 2022, 39(11): 2184-2195

    ZHANG Chengping, GUO Qin, JIA Xiaoqing, et al. Research progress of immersion coolant for data centers[J]. Fine Chemicals, 2022, 39(11): 2184-2195
    [4] CHENG W L, ZHANG W W, CHEN H, et al. Spray cooling and flash evaporation cooling: the current development and application[J]. Renewable and Sustainable Energy Reviews, 2016, 55: 614-628
    [5] ZHU J Q, JIAO Y X, DONG H, et al. Research on the flow and heat transfer characteristics of RP-3 and structural optimization in parallel bending cooling channels[J]. Applied Thermal Engineering, 2024, 241: 122432
    [6] 韩冰冰. 数据中心液冷技术发展现状[J]. 智能建筑, 2020(8): 73-76

    HAN Bingbing. Development status of liquid cooling technology in data center[J]. Intelligent Building, 2020(8): 73-76
    [7] LUCCHESE R, VARAGNOLO D, JOHANSSON A. Controlled direct liquid cooling of data servers[J]. IEEE Transactions on Control Systems Technology, 2021, 29(6): 2325-2338
    [8] EL-GENK M S. Immersion cooling nucleate boiling of high power computer chips[J]. Energy conversion and management, 2012, 53(1): 205-218
    [9] WEN S, CHEN G, WU Q, et al. Simulation study on nanofluid heat transfer in immersion liquid-cooled server[J]. Applied Sciences, 2023, 13(13): 7575
    [10] ZHOU G H, ZHOU J Z, HUAI X L, et al. A two-phase liquid immersion cooling strategy utilizing vapor chamber heat spreader for data center servers[J]. Applied Thermal Engineering, 2022, 210: 118289
    [11] ZHANG H N, SHAO S Q, XU H B, et al. Free cooling of data centers: a review[J]. Renewable and sustainable energy reviews, 2014, 35: 171-182
    [12] DOBRIANSKY Y. Concepts of self-acting circulation loops for downward heat transfer (reverse thermosiphons)[J]. Energy conversion and management, 2011, 52(1): 414-425
    [13] YUE C, ZHANG Q, ZHAI Z Q, et al. CFD simulation on the heat transfer and flow characteristics of a microchannel separate heat pipe under different filling ratios[J]. Applied Thermal Engineering, 2018, 139: 25-34
    [14] ZHANG H N, SHAO S Q, GAO Y P, et al. The effect of heating power distribution on the startup time and overshoot of a loop thermosyphon with dual evaporators[J]. Applied Thermal Engineering, 2018, 132: 554-559
    [15] DING T, CAO H W, HE Z G, et al. Visualization experiment on boiling heat transfer and flow characteristics in separated heat pipe system[J]. Experimental Thermal and Fluid Science, 2018, 91: 423-431
    [16] SAMBA A, LOUAHLIA-GUALOUS H, LE MASSON S, et al. Two-phase thermosyphon loop for cooling outdoor telecommunication equipments[J]. Applied Thermal Engineering, 2013, 50(1): 1351-1360
    [17] 张红星, 苗建印, 王录, 等. 嫦娥三号两相流体回路的地面试验验证方法及试验结果分析[J]. 中国科学: 技术科学, 2014, 44(6): 589-596

    ZHANG Hongxing, MIAO Jianyin, WANG Lu, et al. Ground test method and results of closed two-phase thermosyphons for the moon exploration spacecraft Chang’E-3[J]. Scientia Sinica (Technologica), 2014, 44(6): 589-596
    [18] 赵建福, 李震东, 苗建印, 等. 部分重力驱动的两相流体自然循环回路传热性能的数值仿真[J]. 载人航天, 2015, 21(1): 64-68,94 doi: 10.3969/j.issn.1674-5825.2015.01.012

    ZHAO Jianfu, LI Zhendong, MIAO Jianyin, et al. Numerical simulation of heat transfer in closed two-phase natural circulation system driven by partial gravity[J]. Manned Spaceflight, 2015, 21(1): 64-68,94 doi: 10.3969/j.issn.1674-5825.2015.01.012
    [19] GUO Y D, WANG L, MIAO J Y, et al. Design and validation of closed two-phase thermosyphon loop in lunar gravity environment during China lunar project CE-4[J]. Microgravity Science and Technology, 2022, 34(3): 38
    [20] EL-GENK M S, BOSTANCI H. Saturation boiling of HFE-7100 from a copper surface, simulating a microelectronic chip[J]. International Journal of Heat and Mass Transfer, 2003, 46(10): 1841-1854
    [21] MOFFAT R J. Describing the uncertainties in experimental results[J]. Experimental thermal and fluid science, 1988, 1(1): 3-17
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  177
  • HTML全文浏览量:  68
  • PDF下载量:  17
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-10-28
  • 修回日期:  2024-12-10
  • 网络出版日期:  2024-12-17

目录

    /

    返回文章
    返回