Optimal Hybrid Attitude Control of Spacecraft in Elliptical Orbit
-
摘要: 航天器在姿态控制过程中, 纯磁控在提供控制力矩时存在欠驱动和控制能力有限的问题. 本文提出在使用磁力矩器之外合理地加入脉冲推力器, 即混合使用连续和离散控制力矩完成航天器的姿态控制任务. 基于这种力矩施加方式, 设计一种面向椭圆轨道航天器的混合线性二次型(Linear Quadratic Regulator, LQR)姿态控制方法. 通过研究椭圆轨道上磁控能力随着椭圆轨道偏心率的变化趋势, 找出椭圆轨道上纯磁控制能力最低的时刻, 并在此时施加合适的脉冲, 使得系统需要的控制增益通过离散脉冲的加入得到一定的补偿. 仿真结果表明, 面向椭圆轨道航天器的混合线性二次型控制方法在姿态控制效果上具有良好表现.Abstract: During the spacecraft attitude control, pure magnetic control suffers from under actuation and limited torque authority, restricting its effectiveness, particularly in elliptical orbits where the magnetic field does not vary as regularly as it does in circular orbits. This paper explores the integration of an impulse thruster alongside a magnetic torque generator, employing a combination of continuous and discrete control moments to enhance attitude maneuverability and stability. By leveraging the complementary characteristics of both control methods, a more effective attitude control strategy can be achieved. Based on this hybrid torque application, a Linear Quadratic Regulator (LQR)-based attitude control strategy is developed for spacecraft operating in elliptical orbits. The proposed control framework dynamically determines the timing and magnitude of discrete impulses to compensate for the deficiencies of pure magnetic control. By analyzing the relationship between magnetic control effectiveness and variations in the eccentricity of elliptical orbit, we identify the point at which pure magnetic control exhibits its weakest capability. At this critical moment, an appropriately impulse is applied, compensating for the system’s required control gain through discrete thrust pulses. This method ensures that the spacecraft maintains the desired attitude control effects with improved accuracy and robustness. Furthermore, the proposed hybrid control approach is evaluated through numerical simulations under given orbital and disturbance conditions. Simulation results demonstrate that the proposed hybrid LQR control method significantly enhances attitude control performance compared to purely magnetic control strategies. The introduction of pulse thrusters effectively reduces the regulation time and improves the transient performance of the system. These findings highlight the effectiveness of the hybrid control approach in addressing the challenges of spacecraft attitude regulation in elliptical orbits and provide valuable insights into advanced control methodologies for spacecraft operating.
-
表 1 航天器椭圆轨道参数
Table 1. Spacecraft elliptical orbit parameters
参数 数值 轨道倾角/(º) 87 近地点角距/rad 0 升交点赤经/rad 0 真近点角/(º) 0 -
[1] LOVERA M, ASTOLFI A. Global magnetic attitude control of spacecraft in the presence of gravity gradient[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 796-805 doi: 10.1109/TAES.2006.248214 [2] 张刘, 王绍举, 金光. 小卫星三轴稳定鲁棒自适应控制器设计[J]. 空间科学学报, 2009, 29(1): 29-33 doi: 10.11728/cjss2009.01.029ZHANG Liu, WANG Shaoju, JIN Guang. Design of three-axis stable robust adaptive attitude control of microsatellites[J]. Chinese Journal of Space Science, 2009, 29(1): 29-33 doi: 10.11728/cjss2009.01.029 [3] WISNIEWSKI R. Linear time-varying approach to satellite attitude control using only electromagnetic actuation[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(4): 640-647 doi: 10.2514/2.4609 [4] LOVERA M, ASTOLFI A. Spacecraft attitude control using magnetic actuators[J]. Automatica, 2004, 40(8): 1405-1414 doi: 10.1016/j.automatica.2004.02.022 [5] SILANI E, LOVERA M. Magnetic spacecraft attitude control: a survey and some new results[J]. Control Engineering Practice, 2005, 13(3): 357-371 doi: 10.1016/j.conengprac.2003.12.017 [6] ZHOU B. Global stabilization of periodic linear systems by bounded controls with applications to spacecraft magnetic attitude control[J]. Automatica, 2015, 60: 145-154 doi: 10.1016/j.automatica.2015.07.003 [7] CHEN X J, STEYN W. Robust combined eigenaxis slew manoeuvre[C]//Proceedings of 1999 Guidance, Navigation, and Control Conference and Exhibit. Portland: AIAA, 1999: 521-529 [8] HALL C D, TSIOTRAS P, SHEN H J. Tracking rigid body motion using thrusters and momentum wheels[J]. The Journal of the Astronautical Sciences, 2002, 50(3): 311-323 doi: 10.1007/BF03546255 [9] WISNIEWSKI R, MARKLEY F L. Optimal magnetic attitude control[J]. IFAC Proceedings Volumes, 1999, 32(2): 7991-7996 doi: 10.1016/S1474-6670(17)57363-2 [10] PSIAKI M L. Magnetic torquer attitude control via asymptotic periodic linear quadratic regulation[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(2): 386-394 doi: 10.2514/2.4723 [11] WOOD M, CHEN W H, FERTIN D. Model predictive control of low earth orbiting spacecraft with magneto-torquers[C]//Proceedings of 2006 IEEE Conference on Computer Aided Control System Design, 2006 IEEE International Conference on Control Applications, 2006 IEEE International Symposium on Intelligent Control. Munich: IEEE, 2006: 2908-2913 [12] 孙兆伟, 林晓辉, 曹喜滨. 小卫星姿态大角度机动联合控制算法[J]. 哈尔滨工业大学学报, 2003, 35(6): 663-667,670 doi: 10.3321/j.issn:0367-6234.2003.06.007SUN Zhaowei, LIN Xiaohui, CAO Xibin. Combined control algorithm for large angle maneuver of small satellite[J]. Journal of Harbin Institute of Technology, 2003, 35(6): 663-667,670 doi: 10.3321/j.issn:0367-6234.2003.06.007 [13] 孙兆伟, 杨旭, 杨涤. 小卫星磁力矩器与反作用飞轮联合控制算法研究[J]. 控制理论与应用, 2002, 19(2): 173-177 doi: 10.3969/j.issn.1000-8152.2002.02.005SUN Zhaowei, YANG Xu, YANG Di. The combined control algorithm for magnetorquer and reaction wheel of small satellite[J]. Control Theory :Times New Roman;">& Applications, 2002, 19(2): 173-177 doi: 10.3969/j.issn.1000-8152.2002.02.005 [14] PULECCHI T, LOVERA M. Attitude control of spacecraft with partially magnetic actuation[J]. IFAC Proceedings Volumes, 2007, 40(7): 609-614 doi: 10.3182/20070625-5-FR-2916.00104 [15] SOBIESIAK L, DAMAREN C. Hybrid periodic differential element control using the geomagnetic Lorentz force[C]//Proceedings of AIAA/AAS Astrodynamics Specialist Conference. Minneapolis: AIAA, 2012: 4584 [16] SOBIESIAK L A, DAMAREN C J. Optimal continuous/impulsive control for Lorentz-augmented spacecraft formations[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(1): 151-157 doi: 10.2514/1.G000334 [17] VATANKHAHGHADIM B, DAMAREN C J. Optimal combination of magnetic attitude control with impulsive thrusting[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(10): 2391-2398 doi: 10.2514/1.G001664 [18] PETERSEN C D, LEVE F, FLYNN M, et al. Recovering linear controllability of an underactuated spacecraft by exploiting solar radiation pressure[J]. Journal of Guidance, Control, and Dynamics, 2016, 39(4): 826-837 doi: 10.2514/1.G001446 [19] VATANKHAHGHADIM B, DAMAREN C J. Optimal hybrid magnetic attitude control: disturbance accommodation and impulse timing[J]. IEEE Transactions on Control Systems Technology, 2017, 25(4): 1512-1520 doi: 10.1109/TCST.2016.2604739 -
-