Design and Calibration of High-resolution Low-noise Micro Flow Sensors for Cold Gas Thrusters
-
摘要: 微流量传感器用于精确测量和控制流经推力器的气体流量, 其性能直接影响冷气推力器系统的整体表现. 针对当前微流量传感器分辨率低、噪声大和响应时间慢的问题, 研制了一种基于恒温差原理的MEMS微流量传感器系统. 该传感器采用了4个MEMS铂电阻构成恒温差架构, 通过高精度恒温差驱动电路实现温差恒定, 经过测温电桥将温度变化信号经过高精度程控放大器输入到24位高精度模数转换器(ADC)进行采样, 实现了低噪声和高精度的微流量信号采集. 测试结果显示, 该微流量传感器在0.05~1 Hz等效输出噪声小于 0.126 μL·s–1·Hz–1/2, 分辨率达到0.06 μL·s–1, 量程为0~1000 μL·s–1, 响应时间为1.2 ms. 其测量分辨率高、噪声低、响应速度快, 为空间引力波探测中的冷气推力器系统提供了关键的技术支持.Abstract: Micro flow sensors are critical for the precise measurement and control of gas flow in cold gas thruster systems, directly influencing the overall performance of these systems in space applications. However, conventional micro flow sensors suffer from limitations such as low resolution, high noise, and slow response time, which restrict their effectiveness in high-precision scenarios like drag-free control for space-based gravitational wave detection. To address these challenges, this paper presents the development of a MEMS-based micro flow sensor system utilizing the constant temperature difference principle. The sensor incorporates four MEMS platinum resistors arranged in a constant temperature difference configuration. A high-precision constant temperature difference driving circuit maintains a stable temperature gradient at the sensor's detection site, ensuring enhanced measurement consistency. The sensor system employs a temperature measurement bridge, which converts minute temperature variations into electrical signals. These signals are subsequently amplified by a high-precision programmable amplifier and digitized using a 24-bit high-resolution ADC. This approach significantly reduces noise while improving measurement precision, overcoming the limitations of traditional micro flow sensors. Experimental results demonstrate that the developed micro flow sensor achieves an equivalent output noise of less than 0.126 μL·s–1·Hz–1/2 in the frequency range of 0.05 Hz to 1 Hz. Additionally, it offers an ultra-high resolution of better than 0.06 μL·s–1, a measurement range of 0 to 1000 μL·s–1, and a rapid response time of 1.2 ms. These improvements in measurement resolution, noise suppression, and response speed significantly enhance the sensor’s performance, making it well-suited for demanding aerospace applications. The advancements in this micro flow sensor system provide crucial technical support for cold gas thruster systems in space gravitational wave detection missions. By improving flow measurement accuracy and stability, this sensor contributes to the enhanced performance of drag-free control systems, ensuring the precise and stable operation of spacecraft during gravitational wave observations.
-
Key words:
- Micro flow /
- Constant temperature difference /
- Low noise /
- High resolution /
- Cold gas thruster
-
表 1 电压与流量拟合
Table 1. Voltage and flow fitting
电压/mV 微流量/ (μL·s–1) 电压/mV 微流量/(μL·s–1) 0.31 0 3.9 228.84 0.26 0 4.46 263.34 1 8.83 5.53 365.17 1.01 11.67 5.72 371.51 1.06 21.83 6.82 516.34 1.11 39.00 7 543.68 1.12 48.50 7.29 587.18 1.15 56.67 8.1 746.68 1.87 116.67 8.44 811.85 2.51 162.84 9.5 1079.19 -
[1] 杨超, 贺建武, 康琦, 等. 亚微牛级推力测量系统设计及实验研究[J]. 中国光学, 2019, 12(3): 526-534 doi: 10.3788/co.20191203.0526YANG Chao, HE Jianwu, KANG Qi, et al. Design and experimental study of sub-micro-scale thrust measurement systems[J]. Chinese Optics, 2019, 12(3): 526-534 doi: 10.3788/co.20191203.0526 [2] 于达仁, 牛翔, 王泰卜, 等. 面向空间引力波探测任务的微推进技术研究进展[J]. 中山大学学报(自然科学版), 2021, 60(1/2): 194-212YU Daren, NIU Xiang, WANG Taibu, et al. The developments of micro propulsion technology based on space gravitational wave detection task[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(1/2): 194-212 [3] LIU H, NIU X, ZENG M, et al. Review of micro propulsion technology for space gravitational waves detection[J]. Acta Astronautica, 2022, 193: 496-510 doi: 10.1016/j.actaastro.2022.01.043 [4] 张锦绣, 陶文舰, 连晓斌, 等. 空间引力波探测无拖曳技术现状与趋势[J]. 国防科技大学学报, 2024, 46(2): 1-17 doi: 10.11887/j.cn.202402001ZHANG Jinxiu, TAO Wenjian, LIAN Xiaobin, et al. Current status and trends of drag-free technology for space-based gravitational wave detection[J]. Journal of National University of Defense Technology, 2024, 46(2): 1-17 doi: 10.11887/j.cn.202402001 [5] MATTICARI G, NOCI G, SICILIANO P, et al. Cold gas micro propulsion prototype for very fine spacecraft attitude/position control[C]//42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Sacramento: AIAA, 2006: 4872 [6] NOCI G, MATTICARI G, SICILIANO P, et al. Cold gas micro propulsion system for scientific satellite fine pointing: review of development and qualification activities at Thales Alenia Space Italia[C]//45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Denver: AIAA, 2009: 5127-5139 [7] 吴岳良, 胡文瑞, 王建宇, 等. 空间引力波探测综述与拟解决的科学问题[J]. 空间科学学报, 2023, 43(4): 589-599 doi: 10.11728/cjss2023.04.yg08WU Yuliang, HU Wenrui, WANG Jianyu, et al. Review and scientific objectives of spaceborne gravitational wave detection missions[J]. Chinese Journal of Space Science, 2023, 43(4): 589-599 doi: 10.11728/cjss2023.04.yg08 [8] LISA Consortium. LISA: laser interferometer space antenna—a proposal in response to the ESA call for L3 mission concepts[EB/OL]. (2017-01-20)[2019-12-30]. https://www.cosmos.esa.int/documents/678316/1700384/LISA_L3_20170120+-+Submitted.pdf/5b036a72-ed33-dbad-871d-f16ed282723d [9] 罗子人, 张敏, 靳刚, 等. 中国空间引力波探测“太极计划”及“太极1号”在轨测试[J]. 深空探测学报, 2020, 7(1): 3-10LUO Ziren, ZHANG Min, JIN Gang, et al. Introduction of Chinese space-borne gravitational wave detection program “Taiji” and “Taiji-1” satellite mission[J]. Journal of Deep Space Exploration, 2020, 7(1): 3-10 [10] KUO J T W, YU L, MENG E. Micromachined thermal flow sensors — a review[J]. Micromachines, 2012, 3(3): 550-573 doi: 10.3390/mi3030550 [11] 侯智昊, 刘旭辉, 龙军, 等. 一种基于铂电阻的硅基MEMS热式流量传感器芯片研制[J]. 微处理机, 2023, 44(3): 11-14 doi: 10.3969/j.issn.1002-2279.2023.03.003HOU Zhihao, LIU Xuhui, LONG Jun, et al. Development of a silicon-based MEMS thermal flow sensor chip based on platinum resistance[J]. Microprocessors, 2023, 44(3): 11-14 doi: 10.3969/j.issn.1002-2279.2023.03.003 [12] QIAO J P, CHEN J Y, JIAO B B, et al. A highly sensitive dual-mode thermal flow sensor based on calorimetric mode[J]. IEEE Sensors Journal, 2024, 24(2): 1245-1254 doi: 10.1109/JSEN.2023.3336293 -
-