留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太极计划中的测温电桥激励源设计与验证

言立慧 刘河山 边星 罗子人

言立慧, 刘河山, 边星, 罗子人. 太极计划中的测温电桥激励源设计与验证[J]. 空间科学学报. doi: 10.11728/cjss2025.03.2024-0040
引用本文: 言立慧, 刘河山, 边星, 罗子人. 太极计划中的测温电桥激励源设计与验证[J]. 空间科学学报. doi: 10.11728/cjss2025.03.2024-0040
YAN Lihui, LIU Heshan, BIAN Xing, LUO Ziren. Design and Verification of Temperature Measurement Bridge Excitation Source in the Taiji Program (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 1-10 doi: 10.11728/cjss2025.03.2024-0040
Citation: YAN Lihui, LIU Heshan, BIAN Xing, LUO Ziren. Design and Verification of Temperature Measurement Bridge Excitation Source in the Taiji Program (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 1-10 doi: 10.11728/cjss2025.03.2024-0040

太极计划中的测温电桥激励源设计与验证

doi: 10.11728/cjss2025.03.2024-0040 cstr: 32142.14.cjss.2024-0040
基金项目: 国家重点研发计划项目资助(2020YFC2200104)
详细信息
    作者简介:
    • 言立慧 男, 1997年生于河北承德, 硕士, 现就读于中国科学院大学, 主要从事引力波探测器高分辨率温度测量技术的研究. E-mail: yanlihui21@mails.ucas.ac.cn
    通讯作者:
    • 罗子人 男, 1980生于湖南长沙, 博士, 研究员, 2010 年于中国科学院数学与系统科学研究院获得理学博士学位, 现为中国科学院力学研究所研究员, 太极计划首席科学家助理, 主要从事引力波探测的空间激光干涉测距技术的理论分析和方案设计方面的研究. E-mail: luoziren@imech.ac.cn
  • 中图分类号: TH811

Design and Verification of Temperature Measurement Bridge Excitation Source in the Taiji Program

  • 摘要: 热扰动是空间引力波探测最重要的干扰来源之一, 为满足中国空间引力波探测“太极计划”的需求, 需要保证探测器光学干涉平台所在区域温度波动优于10 μK·Hz–1/2 @ 0.1 mHz~1 Hz, 这需要μK·Hz–1/2的温度测量技术. 针对空间引力波探测对高分辨率测温技术的需求, 研制了一套基于惠斯通电桥的多激励源的测温电桥实验装置. 讨论了测温电桥的激励源及其他组件的设计方案, 并进行了恒压源、恒流源和交流源激励下的测温电桥本底噪声的实验验证. 结果表明, 在三种激励源分别激励电桥时, 交流源结合锁相读出技术相较其他两种激励源能够达到更低的本底噪声, 且在30 mHz~1 Hz频率范围内的噪声优于10 μK·Hz–1/2, 基本能满足“太极探路者”的指标要求, 对太极计划后续μK·Hz–1/2级温度测量系统的研制提供了重要参考.

     

  • 图  1  惠斯通电桥原理

    Figure  1.  Scheme of Wheatstone bridge

    图  2  温度测量装置总体框架

    Figure  2.  Framework of temperature measuring system

    图  3  多通道切换电路

    Figure  3.  Multi-channel switching circuit

    图  4  恒流源比例式测量法

    Figure  4.  Proportional measurement for constant current sources

    图  5  DAC8811外围电路原理

    Figure  5.  Schematic diagram of the DAC8811

    图  6  AD8422外围电路原理

    Figure  6.  Schematic diagram of the AD8422

    图  7  软件流程

    Figure  7.  Software flowchart

    图  8  测温电桥实物

    Figure  8.  Wheatstone bridge

    图  9  实验环境

    Figure  9.  Experimental environment

    图  10  大气环境下的本底噪声结果

    Figure  10.  Results of substrate noise in atmospheric environment

    图  11  真空环境下的本底噪声结果

    Figure  11.  Results of substrate noise in vacuum environment

  • [1] 罗子人, 白姗, 边星, 等. 空间激光干涉引力波探测[J]. 力学进展, 2013, 43(4): 415-447 doi: 10.6052/1000-0992-13-044

    LUO Ziren, BAI Shan, BIAN Xing, et al. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics, 2013, 43(4): 415-447 doi: 10.6052/1000-0992-13-044
    [2] (吴岳良, 胡文瑞, 王建宇, 等. 空间引力波探测综述与拟解决的科学问题[J]. 空间科学学报, 2023, 43(4): 589-599 doi: 10.11728/cjss2023.04.yg08

    WU Yueliang, HU Wenrui, WANG Jianyu, et al. Review and scientific objectives of spaceborne gravitational wave detection missions[J]. Chinese Journal of Space Science, 2023, 43(4): 589-599 doi: 10.11728/cjss2023.04.yg08
    [3] 罗子人, 张敏, 靳刚, 等. 中国空间引力波探测"太极计划"及"太极1号"在轨测试[J]. 深空探测学报, 2020, 7(1): 3-10

    LUO Ziren, ZHANG Min, JIN Gang, et al. Introduction of Chinese space-borne gravitational wave detection program "Taiji" and "Taiji-1" satellite mission[J]. Journal of Deep Space Exploration, 2020, 7(1): 3-10
    [4] 王坦, 何思译, 徐佳文. 引力波探测中的噪声抑制技术综述[J]. 天文学进展, 2022, 40(4): 556-574 doi: 10.3969/j.issn.1000-8349.2022.04.04

    WANG Tan, HE Siyi, XU Jiawen. Review of noise suppressing technologies for gravitational-waves detection[J]. Progress in Astronomy, 2022, 40(4): 556-574 doi: 10.3969/j.issn.1000-8349.2022.04.04
    [5] LUO J, CHEN L S, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3): 035010 doi: 10.1088/0264-9381/33/3/035010
    [6] DEHNE M, TRÖBS M, HEINZEL G, et al. Verification of polarising optics for the LISA optical bench[J]. Optics Express, 2012, 20(25): 27273-27287 doi: 10.1364/OE.20.027273
    [7] CHEN K, ZHANG X F, GUO T, et al. Key technologies analysis and design of ultra-clean & ultra-stable spacecraft for gravitational wave detection[J]. International Journal of Modern Physics A, 2021, 36(11n12): 2140021 doi: 10.1142/S0217751X21400212
    [8] ZHAO Y Z, BERGMANN J H M. Non-contact infrared thermometers and thermal scanners for human body temperature monitoring: a systematic review[J]. Sensors, 2023, 23(17): 7439 doi: 10.3390/s23177439
    [9] WUDY F E, MOOSBAUER D J, MULTERER M, et al. Fast micro-Kelvin resolution thermometer based on NTC thermistors[J]. Journal of Chemical :Times New Roman;">& Engineering Data, 2011, 56(12): 4823-4828
    [10] LOBO A, NOFRARIAS M, SANJUAN J. Thermal diagnostics for LTP[J]. Classical and Quantum Gravity, 2005, 22(10): S171-S176 doi: 10.1088/0264-9381/22/10/006
    [11] ROMA-DOLLASE D, GUALANI V, GOHLKE M, et al. Resistive-based micro-kelvin temperature resolution for ultra-stable space experiments[J]. Sensors, 2022, 23(1): 145 doi: 10.3390/s23010145
    [12] 刘红, 张晓峰, 冯建朝, 等. 精密热控技术在太极一号卫星上的应用[J]. 空间科学学报, 2021, 41(2): 337-341 doi: 10.11728/cjss2021.02.337

    LIU Hong, ZHANG Xiaofeng, FENG Jianchao, et al. Application of precision thermal control techniques in Taiji-1 satellite[J]. Chinese Journal of Space Science, 2021, 41(2): 337-341 doi: 10.11728/cjss2021.02.337
    [13] 代国红, 许艺铧, 吴庆丰, 等. 基于惠斯通电桥的弯曲应变测量灵敏度研究[J]. 南昌大学学报(理科版), 2022, 46(1): 66-71

    DAI Guohong, XU Yihua, WU Qingfeng, et al. Strain measurement sensitivity based on Wheatstone bridge[J]. Journal of Nanchang University (Natural Science), 2022, 46(1): 66-71
    [14] GHOSH S, MUKHERJEE A, SAHOO K, et al. A novel sensitivity enhancement technique employing wheatstone's bridge for strain and temperature measurement[C]//Proceedings of the 2015 Third International Conference on Computer, Communication, Control and Information Technology (C3IT). Hooghly: IEEE, 2015: 1-6
    [15] SANJUÁN J, LOBO A, NOFRARIAS M, et al. Thermal diagnostics front-end electronics for LISA Pathfinder[J]. Review of Scientific Instruments, 2007, 78(10): 104904 doi: 10.1063/1.2800776
    [16] ALEKSIĆ O S, RADOJČIĆ B M, RAMOVIĆ R M. Modeling and simulation of NTC thick film thermistor geometries[J]. Microelectronics International, 2007, 24(1): 27-34 doi: 10.1108/13565360710725919
    [17] SARKAR S. Platinum RTD sensor based multi-channel high-precision temperature measurement system for temperature range −100°C to +100 °C using single quartic function[J]. Cogent Engineering, 2018, 5(1): 1558687 doi: 10.1080/23311916.2018.1558687
    [18] MCCARTHY M, MCCARTHY A. RTD温度测量系统对ADC的要求[J]. 今日电子, 2016(4): 31-33 doi: 10.3969/j.issn.1004-9606.2016.04.005

    MCCARTHY M, MCCARTHY A. ADC Requirements for RTD Temperature Measurement Systems[J]. Electronics Today, 2016(4): 31-33 doi: 10.3969/j.issn.1004-9606.2016.04.005
    [19] MENG W J, ZHANG F H, DONG G D, et al. Research on losses of PCB parasitic capacitance for GaN-based full bridge converters[J]. IEEE Transactions on Power Electronics, 2021, 36(4): 4287-4299 doi: 10.1109/TPEL.2020.3024881
    [20] DE GRAAF G, WOLFFENBUTTEL R F. Lock-in amplifier techniques for low-frequency modulated sensor applications[C]//2012 IEEE International Instrumentation and Measurement Technology Conference Proceedings. Graz: IEEE, 2012: 1745-1749
    [21] LIU H, LIU W H. An improved adaptive time difference estimation method based on median filter in impulse environment[J]. International Journal of Information and Communication Sciences, 2021, 6(3): 66-74 doi: 10.11648/j.ijics.20210603.13
  • 加载中
图(11)
计量
  • 文章访问数:  349
  • HTML全文浏览量:  86
  • PDF下载量:  20
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-03-13
  • 修回日期:  2024-04-15
  • 网络出版日期:  2024-05-27

目录

    /

    返回文章
    返回