留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于LSTM神经网络的Dst指数预报方法

李绍文 牛俊 梅冰 姚俐竹 李炎斌

李绍文, 牛俊, 梅冰, 姚俐竹, 李炎斌. 基于LSTM神经网络的Dst指数预报方法[J]. 空间科学学报. doi: 10.11728/cjss2025.03.2024-0045
引用本文: 李绍文, 牛俊, 梅冰, 姚俐竹, 李炎斌. 基于LSTM神经网络的Dst指数预报方法[J]. 空间科学学报. doi: 10.11728/cjss2025.03.2024-0045
LI Shaowen, NIU Jun, MEI Bing, YAO Lizhu, LI Yanbin. Dst Index Prediction Method Based on LSTM Neural Network (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 641-652 doi: 10.11728/cjss2025.03.2024-0045
Citation: LI Shaowen, NIU Jun, MEI Bing, YAO Lizhu, LI Yanbin. Dst Index Prediction Method Based on LSTM Neural Network (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 641-652 doi: 10.11728/cjss2025.03.2024-0045

基于LSTM神经网络的Dst指数预报方法

doi: 10.11728/cjss2025.03.2024-0045 cstr: 32142.14.cjss.2024-0045
基金项目: 国家重点研发计划项目资助 (2023YFC2808904)
详细信息
    作者简介:
    • 李绍文 男, 2003年5月出生于四川省凉山州, 现为国防科技大学气象海洋学院在读本科生, 主要研究方向为电离层物理、空间天气建模预报. E-mail: 13684376221@163.com
    通讯作者:
    • 牛俊 男, 1989年9月出生于河南省安阳市, 现为国防科技大学气象海洋学院副教授, 主要研究方向为电离层物理、空间天气建模预报. E-mail: niujun@nudt.edu.cn
  • 中图分类号: P353

Dst Index Prediction Method Based on LSTM Neural Network

  • 摘要: Dst指数是当前使用较广泛的用于反映磁暴过程的小时地磁指数, 对Dst指数的预报是现代空间天气学主要研究内容之一. 基于LSTM神经网络方法, 利用2008-2022年的太阳风参数和Dst指数建立Dst指数预报模型, 分别为使用全时域数据建模的LSTM模型和仅使用磁暴期间数据建模的Storm模型. 使用LSTM模型对2001-2002年间的Dst指数进行滚动预报, 预报结果显示该模型对提前1~6 h的Dst指数预报相关系数达到0.94以上, 均方根误差在11 nT以内. Storm模型能够较好地解决LSTM模型在磁暴(尤其是强磁暴, Dst< –100 nT)主相期间预报误差较大的问题, 对2001-2002年期间的23次强磁暴事件预报结果表明, Storm模型对磁暴期间提前6 h的预报结果相关系数较LSTM模型由0.902提升至0.948. 综合两个预报模型组成的LSTM-Storm模型对Dst指数的预报结果相关系数在0.95以上, 均方根误差在9 nT以内, 相比单LSTM模型的预报精度有显著提升.

     

  • 图  1  小时分辨率Dst值 (2001年1月1日至2002年12月31日, 2008年1月1日至2022年12月31日)

    Figure  1.  Hourly resolution Dst index (1 January 2001 to 31 December 2002, 1 January 2008 to 31 December 2022)

    图  2  LSTM细胞内部结构

    Figure  2.  Internal structure of LSTM cell

    图  3  用于预报Dst指数的LSTM神经网络结构

    Figure  3.  Structure of the LSTM neural network for predicting the Dst index

    图  4  LSTM-Storm模型的工作流程

    Figure  4.  Flowchart of the LSTM-Storm model

    图  5  LSTM模型对23起强磁暴事件的预报结果

    Figure  5.  Prediction results of the LSTM model for 23 severe magnetic storm events

    图  6  Storm模型对23起强磁暴事件的预报结果

    Figure  6.  Prediction results of the Storm model for 23 severe magnetic storm events

    图  7  LSTM模型和Storm模型对发生在2001年4月10日至4月14日期间超强磁暴事件的预报结果

    Figure  7.  Prediction results of the LSTM model and the Storm model for the super strong magnetic storm event that occurred from 10 to 14 April 2001

    图  8  LSTM-Storm模型提前1~6 h预报结果与已有研究的比较

    Figure  8.  Comparison of LSTM-Storm model forecast results 1~6 h in advance with past studies

    表  1  2001-2002年强磁暴事件参数

    Table  1.   Parameters of severe magnetic storm events in 2001-2002

    Start date Start time (UT) End date End time (UT) Min. Dst /nT
    2001-03-19 12:00 2001-03-22 15:00 –149
    2001-03-31 00:00 2001-04-04 11:00 –387
    2001-04-10 10:00 2001-04-14 10:00 –271
    2001-04-18 01:00 2001-04-19 19:00 –114
    2001-04-22 02:00 2001-04-24 17:00 –102
    2001-08-17 07:00 2001-08-19 07:00 –105
    2001-09-30 22:00 2001-10-06 16:00 –166
    2001-10-19 11:00 2001-10-25 12:00 –187
    2001-10-27 05:00 2001-10-31 16:00 –157
    2001-10-31 17:00 2001-11-03 09:00 –106
    2001-11-05 20:00 2001-11-12 11:00 –292
    2001-11-22 19:00 2001-11-28 10:00 –221
    2002-03-23 14:00 2002-03-25 05:00 –100
    2002-04-17 09:00 2002-04-19 02:00 –127
    2002-04-19 09:00 2002-04-26 06:00 –149
    2002-05-11 12:00 2002-05-13 16:00 –110
    2002-05-23 09:00 2002-05-26 07:00 –109
    2002-08-01 23:00 2002-08-03 23:00 –102
    2002-08-18 23:00 2002-08-22 22:00 –106
    2002-09-04 01:00 2002-09-06 04:00 –109
    2002-09-07 01:00 2002-09-14 08:00 –181
    2002-09-30 09:00 2002-10-12 20:00 –176
    2002-11-20 16:00 2002-11-26 22:00 –128
    下载: 导出CSV

    表  2  LSTM模型对2001-2002年Dst指数的预报结果

    Table  2.   Dst index prediction results of the LSTM model during 2001-2002

    提前时间/ht+1t+2t+3t+4t+5t+6
    CC0.9710.9680.9620.9550.9470.940
    RMSE/ nT7.447.928.539.269.9610.64
    下载: 导出CSV

    表  3  LSTM-Storm模型提前1~6 h预报结果与已有研究的比较

    Table  3.   Comparison of LSTM-Storm model forecast results 1~6 h in advance with past studies

    提前时间/hLSTM-StormRef. [16]Ref. [17]Ref. [18]
    CCRMSE/nTCCRMSE/nTCCRMSE/nTCCRMSE/nT
    t+10.9894.510.9665.250.9822.680.9832.85
    t+20.9845.410.9466.550.9494.480.9524.80
    t+30.9806.160.9287.590.9185.620.9216.11
    t+40.9707.410.9108.530.8876.520.8957.03
    t+50.9638.210.8929.180.8587.170.8747.65
    t+60.9578.910.8739.860.8267.990.8578.09
    下载: 导出CSV
  • [1] BURTON R K, MCPHERRON R L, RUSSELL C T. An empirical relationship between interplanetary conditions and Dst[J]. Journal of Geophysical Research, 1975, 80(31): 4204-4214 doi: 10.1029/JA080i031p04204
    [2] IYEMORI T, MAEDA H, KAMEI T. Impulse response of geomagnetic indices to interplanetary magnetic field[J]. Journal of Geomagnetism and Geoelectricity, 1979, 31(1): 1-9 doi: 10.5636/jgg.31.1
    [3] 彭宇翔, 吕建永, 顾赛菊. 利用支持向量机预测大磁暴期间Dst指数的变化[J]. 空间科学学报, 2016, 36(6): 866-874 doi: 10.11728/cjss2016.06.866

    PENG Yuxiang, LÜ Jianyong, GU Saiju. Application of support vector machine to the forecasting of Dst index during geomagnetic storm[J]. Chinese Journal of Space Science, 2016, 36(6): 866-874 doi: 10.11728/cjss2016.06.866
    [4] YATSENKO V O, IVANOV S M, PARNOWSKI A, et al. Guaranteed narmax model for the prediction of geomagnetic Dst index[J]. Journal of Physical Studies, 2019, 23(1): 1901 doi: 10.30970/jps.23.1901
    [5] MYAGKOVA I N, SHIROKII V R, VLADIMIROV R D, et al. Prediction of the Dst geomagnetic index using adaptive methods[J]. Russian Meteorology and Hydrology, 2021, 46(3): 157-162 doi: 10.3103/S1068373921030031
    [6] BEJ A, BANERJEE A, CHATTERJEE T N, et al. One-hour ahead prediction of the Dst index based on the optimum state space reconstruction and pattern recognition[J]. The European Physical Journal Plus, 2022, 137(4): 479 doi: 10.1140/epjp/s13360-022-02687-7
    [7] NILAM B, RAM S T. Forecasting geomagnetic activity (Dst Index) using the ensemble Kalman filter[J]. Monthly Notices of the Royal Astronomical Society, 2022, 511(1): 723-731 doi: 10.1093/mnras/stac099
    [8] 吴洪钟, 都亨. 行星际参量和地磁指数相关关系之比较[J]. 空间科学学报, 1986, 6(3): 196-202 doi: 10.11728/cjss1986.03.196

    WU Hongzhong, DU Heng. Comparison of the correlations between the interplanetary parameters and geomagnetic indexes[J]. Chinese Journal of Space Science, 1986, 6(3): 196-202 doi: 10.11728/cjss1986.03.196
    [9] LUNDSTEDT H, WINTOFT P. Prediction of geomagnetic storms from solar wind data with the use of a neural network[J]. Annales Geophysicae, 1994, 12(1): 19-24 doi: 10.1007/s00585-994-0019-2
    [10] WU J G, LUNDSTEDT H. Geomagnetic storm predictions from solar wind data with the use of dynamic neural networks[J]. Journal of Geophysical Research: Space Physics, 1997, 102(A7): 14255-14268 doi: 10.1029/97JA00975
    [11] LUNDSTEDT H, GLEISNER H, WINTOFT P. Operational forecasts of the geomagnetic DstDst index[J]. Geophysical Research Letters, 2002, 29(24): 2181
    [12] 陈春, 孙树计, 许正文, 等. 利用神经网络技术提前一小时预报Dst指数[J]. 空间科学学报, 2011, 31(2): 182-186 doi: 10.11728/cjss2011.02.182

    CHEN Chun, SUN Shuji, XU Zhengwen, et al. Short-term Dst index forecasting method based on neural network techniques[J]. Chinese Journal of Space Science, 2011, 31(2): 182-186 doi: 10.11728/cjss2011.02.182
    [13] BALA R, REIFF P. Improvements in short-term forecasting of geomagnetic activity[J]. Space Weather, 2012, 10(6): S06001
    [14] REVALLO M, VALACH F, HEJDA P, et al. A neural network Dst index model driven by input time histories of the solar wind–magnetosphere interaction[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2014, 110-111: 9-14 doi: 10.1016/j.jastp.2014.01.011
    [15] LAZZÚS J A, VEGA P, ROJAS P, et al. Forecasting the Dst index using a swarm-optimized neural network[J]. Space Weather, 2017, 15(8): 1068-1089 doi: 10.1002/2017SW001608
    [16] GRUET M A, CHANDORKAR M, SICARD A, et al. Multiple-hour-ahead forecast of the Dst index using a combination of long short-term memory neural network and Gaussian process[J]. Space Weather, 2018, 16(11): 1882-1896 doi: 10.1029/2018SW001898
    [17] LAZZÚS J A, VEGA-JORQUERA P, PALMA-CHILLA L, et al. Dst index forecast based on ground-level data aided by bio-inspired algorithms[J]. Space Weather, 2019, 17(10): 1487-1506
    [18] XU S B, HUANG S Y, YUAN Z G, et al. Prediction of the Dst index with Bagging ensemble-learning algorithm[J]. The Astrophysical Journal Supplement Series, 2020, 248(1): 14 doi: 10.3847/1538-4365/ab880e
    [19] PARK W, LEE J, KIM K C, et al. Operational Dst index prediction model based on combination of artificial neural network and empirical model[J]. Journal of Space Weather and Space Climate, 2021, 11(38): 38
    [20] NURAENI F, RUHIMAT M, ARIS M A, et al. Development of 24 hours Dst index prediction from solar wind data and IMF Bz using NARX[J]. Journal of Physics: Conference Series, 2022, 2214: 012024 doi: 10.1088/1742-6596/2214/1/012024
    [21] XU W W, ZHU Y M, ZHU L, et al. A class of Bayesian machine learning model for forecasting Dst during intense geomagnetic storms[J]. Advances in Space Research, 2023, 72(9): 3882-3889 doi: 10.1016/j.asr.2023.07.009
    [22] ZHANG J Y, FENG Y, ZHANG J X, et al. The short time prediction of the Dst index based on the long-short time memory and empirical mode decomposition-long-short time memory models[J]. Applied Sciences, 2023, 13(21): 11824 doi: 10.3390/app132111824
    [23] HU A, CAMPOREALE E, SWIGER B. Multi-hour-ahead Dst index prediction using multi-fidelity boosted neural networks[J]. Space Weather, 2023, 21(4): e2022SW003286 doi: 10.1029/2022SW003286
    [24] NAIR M, REDMON R, YOUNG L Y, et al. MagNet—a data-science competition to predict disturbance storm-time index (Dst) from solar wind data[J]. Space Weather, 2023, 21(10): e2023SW003514 doi: 10.1029/2023SW003514
    [25] CIANCHINI G, PISCINI A, DE SANTIS A, et al. Fast Dst computation by applying deep learning to Swarm satellite magnetic data[J]. Advances in Space Research, 2022, 69(2): 837-855 doi: 10.1016/j.asr.2021.10.051
    [26] RUHIMAT M, NURAENI F, YATINI C Y, et al. Prediction of Dst index by using artificial neural network NARX[J]. AIP Conference Proceedings, 2023, 2941(1): 040006
    [27] LU J Y, PENG Y X, WANG M, et al. Support Vector Machine combined with Distance Correlation learning for Dst forecasting during intense geomagnetic storms[J]. Planetary and Space Science, 2016, 120: 48-55 doi: 10.1016/j.pss.2015.11.004
    [28] LI Y Y, HUANG S Y, XU S B, et al. Selection of the main control parameters for the Dst index prediction model based on a layer-wise relevance propagation method[J]. The Astrophysical Journal Supplement Series, 2022, 260(1): 6 doi: 10.3847/1538-4365/ac616c
    [29] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780 doi: 10.1162/neco.1997.9.8.1735
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  464
  • HTML全文浏览量:  105
  • PDF下载量:  47
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-03-22
  • 修回日期:  2024-04-17
  • 网络出版日期:  2024-05-30

目录

    /

    返回文章
    返回