留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于中高层大气激光雷达的汤加火山灰探测

汪为 王积勤 季凯俊 程学武 林鑫 杨勇 李发泉

汪为, 王积勤, 季凯俊, 程学武, 林鑫, 杨勇, 李发泉. 基于中高层大气激光雷达的汤加火山灰探测[J]. 空间科学学报. doi: 10.11728/cjss2025.03.2024-0046
引用本文: 汪为, 王积勤, 季凯俊, 程学武, 林鑫, 杨勇, 李发泉. 基于中高层大气激光雷达的汤加火山灰探测[J]. 空间科学学报. doi: 10.11728/cjss2025.03.2024-0046
WANG Wei, WANG Jiqing, JI kaijun, CHENG Xuewu, LIN Xin, YANG Yong, LI Faquan. Detection of Tonga Volcanic Ash Using Middle and Upper Atmospheric Lidar (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 1-7 doi: 10.11728/cjss2025.03.2024-0046
Citation: WANG Wei, WANG Jiqing, JI kaijun, CHENG Xuewu, LIN Xin, YANG Yong, LI Faquan. Detection of Tonga Volcanic Ash Using Middle and Upper Atmospheric Lidar (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 1-7 doi: 10.11728/cjss2025.03.2024-0046

基于中高层大气激光雷达的汤加火山灰探测

doi: 10.11728/cjss2025.03.2024-0046 cstr: 32142.14.cjss.2024-0046
基金项目: 国家自然科学基金项目(42305152)和科技部重点研发计划项目(2022YFC2807201)共同资助
详细信息
    作者简介:
    • 汪为 男, 博士, 毕业于中国科学院沈阳自动化研究所, 现为中国科学院精密测量科学与技术创新研究院博士后, 主要研究方向中高层大气探测激光雷达、原子分子光谱. E-mail: wangwei@apm.ac.cn
    通讯作者:
    • 林鑫 1987年出生, 博士, 高级工程师, 主要研究方向为激光雷达、原子分子光谱、激光光谱和原子滤光技术研究及应用. 主持和参与了多项国家级课题和科学工程工作, 发表论文10余篇, 获得发明专利20余项. E-mail: linxin@apm.ac.cn
  • 中图分类号: P412.2

Detection of Tonga Volcanic Ash Using Middle and Upper Atmospheric Lidar

  • 摘要: 采用中高层大气激光雷达在武汉 (30.5°N, 114.3°E)上空对汤加火山灰进行探测, 分析汤加火山灰2022年3月至7月在武汉上空传播时的强度变化, 并对火山灰的埃指数进行了分析. 研究发现, 在2022年3月8日至2022年4月7日期间, 探测到的火山灰信号相对较弱, 从2022年4月10日开始, 激光雷达探测到的火山灰回波信号强度突然增强, 并且该信号在随后的几个月中持续稳定维持在海拔20~25 km之间. 这一现象表明, 火山灰的传播在这段时间内发生了明显变化, 可能与大气的流动特征密切相关. 通过对所探测的火山灰高度进行分析, 发现火山灰在平流层中的传播呈现不均匀的层状结构, 显示火山灰在不同高度和层次之间的分布差异, 为进一步研究火山灰在大气中的传播机制和对环境的影响提供了重要的依据. 此外, 根据所获得的激光雷达数据分析结果可知, 在2022年4-7月, 探测到的火山灰高度与火山灰颗粒尺寸的相关性较弱, 这表明火山灰颗粒的运动和沉降行为可能受到多种复杂因素的影响.

     

  • 图  1  激光雷达系统结构

    Figure  1.  Structural diagram of LiDAR system

    图  2  Na原子滤光器透射谱形

    Figure  2.  Transmission spectrum of Na faraday filter

    图  3  2022年4月10日11:30 UT-12:30 UT期间获得的532 nm和589 nm激光束以30 km归一化后的回波信号 (分别用蓝线和黄线表示)

    Figure  3.  Echo signals of 532 nm and 589 nm normalized to 30 km obtained from 11:30 UT to 12:30 UT on 10 April 2022 (represented by blue lines and yellow lines respectively)

    图  4  2022年4月10日11:00 UT至2022年4月12日00:00 UT获得的15~30 km异常回波信号强度分布

    Figure  4.  Echo signal intensity distribution map. Distribution map of abnormal echo signal intensity from 15 km to 30 km obtained from 10 April 11:00 UT to 12 April 00:00 UT in 2022

    图  5  OMPS在2022年4月10-12日采集的气溶胶数据

    Figure  5.  Aerosol data collected by OMPS from 10 to 12 April 2022

    图  6  不同时间海拔高度与回波信号强度的对数关系(时间分辨率60 min, 高度分辨率96 m)

    Figure  6.  Logarithmic relationship between altitude at different times and echo signal strength, with a time resolution of 60 min and an altitude resolution of 96 m

    图  7  2022年4月10日12:00 UT-22:00 UT内探测的火山灰后向散射埃指数

    Figure  7.  Detected volcanic ash backscatter correlation Angstrom index from 12:00 UT to 22:00 UT on 10 April 2022

    图  8  2022年4月10日至6月15日探测的气溶胶后向散射相关埃指数

    Figure  8.  Aerosol backscatter correlation angstrom index detected from 10 April to 15 June 2022

    图  9  火山灰高度与后向散射埃指数的关系

    Figure  9.  Relationship between volcanic ash height and backscatter angstrom index

    表  1  激光雷达系统各参量

    Table  1.   Key parameters of the system

    Detection speciesParameters
    Laser wavelength/nm589532
    Laser energy/mJ约30约200
    Beam divergence/mrad约0.5约0.5
    Repetition rate/Hz3030
    Telescope diameter/mm约1000约1000
    Telescope focal length/ mm21002100
    Field of view/mrad约1约1
    DetectorPhoton countsPhoton counts
    filter bandwidth4 pm1 nm
    Time resolution /s900900
    Range resolution/ m9696
    下载: 导出CSV
  • [1] SALIKHOV N, SHEPETOV A, PAK G, et al. Disturbances of Doppler frequency shift of ionospheric signal and of telluric current caused by atmospheric waves from explosive eruption of Hunga Tonga Volcano on January 15, 2022[J]. Atmosphere, 2023, 14(2): 245. doi: 10.3390/atmos14020245
    [2] PRADIPTA R, CARTER B A, CURRIE J L, et al. On the propagation of traveling ionospheric disturbances From the Hunga Tonga-Hunga Ha'apai volcano eruption and their possible connection with Tsunami waves[J]. Geophysical Research Letters, 2023, 50(6): e2022GL101925. doi: 10.1029/2022gl101925
    [3] DOLGIKH G I, DOLGIKH S G, OVCHARENKO V V. Atmospheric and deformation disturbances caused by the Hunga-Tonga-Hunga-Ha'apai Volcano[J]. Doklady Earth Sciences, 2022, 505(2): 575-577. doi: 10.1134/s1028334x22080074
    [4] DENAMIEL C, VASYLKEVYCH S, ŽAGAR N, et al. Destructive potential of planetary Meteotsunami Waves beyond the Hunga Tonga-Hunga Ha'apai Volcano eruption[J]. Bulletin of the American Meteorological Society, 2023, 104(1): E178-E191. doi: 10.1175/bams-d-22-0164.1
    [5] RAMÍREZ-HERRERA M T, COCA O, VARGAS-ESPINOSA V. Tsunami effects on the coast of Mexico by the Hunga Tonga-Hunga Ha'apai Volcano eruption, Tonga[J]. Pure and Applied Geophysics, 2022, 179(4): 1117-1137. doi: 10.1007/s00024-022-03017-9
    [6] GAVRILOV B G, POKLAD Y V, RYAKHOVSKY I A, et al. Global electromagnetic disturbances caused by the eruption of the Tonga Volcano on 15 January 2022[J]. Journal of Geophysical Research: Atmospheres, 2022, 127(23): e2022JD037411. doi: 10.1029/2022jd037411
    [7] THOMPSON D W J, WALLACE J M, JONES D, et al. Identifying signatures of natural climate variability in time series of global-mean surface temperature: methodology and insights[J]. Journal of Climate, 2009, 22(22): 6120-6141. doi: 10.1175/2009jcli3089.1
    [8] MADONIA P, BONACCORSO A, BONFORTE A, et al. Propagation of perturbations in the lower and upper atmosphere over the central Mediterranean, Driven by the 15 January 2022 Hunga Tonga-Hunga Ha'apai Volcano explosion[J]. Atmosphere, 2023, 14(1): 65. doi: 10.3390/atmos14010065
    [9] TAHA G, LOUGHMAN R, COLARCO R, et al. Tracking the 2022 Hunga Tonga-Hunga Ha'apai aerosol cloud in the upper and middle stratosphere using space-based observations[J]. Geophysical Research Letters, 2022, 49(19): e2022GL100091. doi: 10.1029/2022gl100091
    [10] SOLOVIEVA M S, SHALIMOV S L. Disturbances in the Lower Ionosphere after the Eruption of the Hunga-Tonga-Hunga-Ha'apai Volcano on January 15, 2022, Recorded by the Subionospheric VLF Radio Signals[J]. Doklady Earth Sciences, 2022, 507(2): 1080-1084. doi: 10.1134/s1028334x22600840
    [11] RAJESH K, LIN C C H, LIN J T, et al. Extreme poleward expanding super plasma bubbles over Asia-Pacific region triggered by Tonga volcano eruption during the recovery-phase of geomagnetic storm[J]. Geophysical Research Letters, 2022, 49(15): e2022GL099798. doi: 10.1029/2022gl099798
    [12] LIN J T, RAJESH P K, LIN C C H, et al. Rapid conjugate appearance of the Giant Ionospheric lamb wave signatures in the Northern hemisphere After Hunga-Tonga Volcano eruptions[J]. Geophysical Research Letters, 2022, 49(8): e2022GL098222. doi: 10.1029/2022gl098222
    [13] LIU X, XU J Y, YUE J, et al. Strong gravity waves associated with Tonga volcano eruption revealed by SABER observations[J]. Geophysical Research Letters, 2022, 49(10): e2022GL098339. doi: 10.1029/2022gl098339
    [14] KULICHKOV S N, CHUNCHUZOV I P, POPOV O E, et al. Acoustic-gravity lamb waves from the eruption of the Hunga-Tonga-Hunga-Hapai Volcano, its energy release and impact on aerosol concentrations and Tsunami[J]. Pure and Applied Geophysics, 2022, 179(5): 1533-1548. doi: 10.1007/s00024-022-03046-4
    [15] DOLGIKH G, DOLGIKH S, OVCHARENKO V. Initiation of infrasonic geosphere waves caused by explosive eruption of Hunga Tonga-Hunga Haʻapai Volcano[J]. Journal of Marine Science and Engineering, 2022, 10(8): 10611. doi: 10.3390/jmse10081061
    [16] 程学武, 宋娟, 李发泉, 等. 双波长高空探测激光雷达技术[J]. 中国激光, 2006, 33(5): 601-606 doi: 10.3321/j.issn:0258-7025.2006.05.006

    CHENG Xuewu, SONG Juan, LI Faquan, et al. Dual-wavelength high altitude detecting Lidar technology[J]. Chinese Journal of Lasers, 2006, 33(5): 601-606 doi: 10.3321/j.issn:0258-7025.2006.05.006
    [17] NAKAMAE K, UCHINO O, MORINO I, et al. Lidar observation of the 2011 Puyehue-Cordón Caulle volcanic aerosols at Lauder, New Zealand[J]. Atmospheric Chemistry and Physics, 2014, 14(22): 12099-12108. doi: 10.5194/acp-14-12099-2014
    [18] JUNG C H, KIM Y P. Simplified analytic model to estimate the ångstrom exponent in a Junge Aerosol size distribution[J]. Environmental Engineering Science, 2010, 27(9): 789-795. doi: 10.1089/ees.2010.0030
    [19] ZHUANG J, YI F. Nabro aerosol evolution observed jointly by lidars at a mid-latitude site and CALIPSO[J]. Atmospheric Environment, 2016, 140: 106-116. doi: 10.1016/j.atmosenv.2016.05.048
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  283
  • HTML全文浏览量:  69
  • PDF下载量:  22
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-03-23
  • 修回日期:  2024-05-24
  • 网络出版日期:  2024-05-27

目录

    /

    返回文章
    返回