留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间洗衣平台的设计、流场分析与上行资源代价评估

杨朝舒 李森 朱光亚 杨松林 丁彭博 孙民政 曹适意

杨朝舒, 李森, 朱光亚, 杨松林, 丁彭博, 孙民政, 曹适意. 空间洗衣平台的设计、流场分析与上行资源代价评估[J]. 空间科学学报. doi: 10.11728/cjss2025.03.2024-0058
引用本文: 杨朝舒, 李森, 朱光亚, 杨松林, 丁彭博, 孙民政, 曹适意. 空间洗衣平台的设计、流场分析与上行资源代价评估[J]. 空间科学学报. doi: 10.11728/cjss2025.03.2024-0058
YANG Zhaoshu, LI Sen, ZHU Guangya, YANG Songlin, DING Pengbo, SUN Minzheng, CAO Shiyi. Design, Flow Field Simulation and Launching Cost Evaluation of a Space Laundry Platform (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 770-782 doi: 10.11728/cjss2025.03.2024-0058
Citation: YANG Zhaoshu, LI Sen, ZHU Guangya, YANG Songlin, DING Pengbo, SUN Minzheng, CAO Shiyi. Design, Flow Field Simulation and Launching Cost Evaluation of a Space Laundry Platform (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 770-782 doi: 10.11728/cjss2025.03.2024-0058

空间洗衣平台的设计、流场分析与上行资源代价评估

doi: 10.11728/cjss2025.03.2024-0058 cstr: 32142.14.cjss.2024-0058
基金项目: 人因工程全国重点实验室自主基金项目资助(SYFD062102)
详细信息
    作者简介:
    • 杨朝舒 男, 1989年3月出生于吉林省长春市, 现为中国航天员科研训练中心助理研究员, 研究方向为飞行器环境控制与生命保障工程. E-mail: yangzhaoshu@sina.cn
    通讯作者:
    • 李森 男, 1984年10月出生于河北省南宫市, 现为中国航天员科研训练中心副研究员, 主要研究方向为航天环境控制与生命保障总体技术、航天器热管理与通风技术等. E-mail: lisenmail@sohu.com
  • 中图分类号: V444, V524

Design, Flow Field Simulation and Launching Cost Evaluation of a Space Laundry Platform

  • 摘要: 针对在轨中长期驻留阶段航天员衣物洗涤的迫切需求, 以及地面传统洗衣技术无法适用于微重力环境的问题, 设计了一种基于雾化臭氧原理的空间洗衣平台. 该平台利用超声雾化阵列将液态水雾化浸润衣物, 通过紫外照射产生臭氧用于除菌; 采用有限元方法对微重力环境下液滴与衣物的附着情况、洗衣平台的内流场进行了仿真分析, 重点分析了在微重力和地面重力条件下液滴在洗衣腔体内分布的均匀性区别. 在此基础上, 根据相对湿度、臭氧浓度等指标确定了预雾化时间、内循环风扇流量等参数; 随后, 采用等效系统质量的方法对雾化臭氧洗衣平台的上行资源代价进行了评估, 该洗衣技术在轨运行一年的资源代价仅为商选洗衣技术的15.7%, 当在轨运行5年后, 相比于完全将衣物作为消耗品上行, 可节省61.9%的等效系统质量. 通过分析两种方法的收益平衡时间点可知, 对于任务周期超过5个月的空间站任务、周期超过2.5个月的深空探测任务, 发展在轨洗衣技术更具资源代价优势. 本文的工作有望为未来中国在轨洗衣技术的发展提供参考.

     

  • 图  1  在轨洗衣装置基本结构(a)和三维模型(b)

    Figure  1.  Structural scheme (a) and 3D model (b) of the proposed on-orbit laundry platform

    图  2  雾化臭氧洗衣平台的基本工作过程及各模块的工作阶段

    Figure  2.  Workflow and duty circles for different modules of atomization and ozone laundry platform

    图  3  液滴附着于衣物表面过程的两相流建模

    Figure  3.  Simulation model of the droplet attaching onto the clothes surface

    图  4  不同接触角下液滴与衣物表面的附着情况

    Figure  4.  Attributing of droplet onto clothes surfaces with different contacting angle

    图  5  雾化臭氧洗衣平台的仿真模型构建

    Figure  5.  Simulation model of the laundry platform

    图  6  洗衣平台仿真结果. (a)洗衣过程内循环流场仿真, (b)通风过程进/排气流场

    Figure  6.  Flow simulation results. (a) Cycling flow in laundry procedure, (b) in/outlet flow in ventilation procedure

    图  7  预雾化过程中部分时间点的相对湿度云图

    Figure  7.  Relative humidity contour at different moment in pre-atomization procedure

    图  8  预雾化过程中湿度随时间的变化

    Figure  8.  Time dependent relative humidity in pre-atomization procedure

    图  9  重力条件下雾化液滴在内循环流场中的位置及不同高度下各粒径液滴的分布数量统计直方图(仿真时间为2 s)

    Figure  9.  Droplets distribution inside the laundry chamber and histogram of the droplet amounts with different diameters and in different height at microgravity (simulation time: 2 s)

    图  10  微重力条件下雾化液滴在内循环流场中的位置及不同高度下各粒径液滴的分布数量统计直方图(仿真时间为2 s)

    Figure  10.  Droplets distribution inside the laundry chamber and histogram of the droplet amounts with different diameters and in different height at ground gravity (simulation time: 2 s)

    图  11  不同臭氧灯数量下腔体内光功率密度分布

    Figure  11.  Optical power density inside the chamber with different number of ozone lamps

    图  12  不同臭氧灯数量下腔体内臭氧浓度随时间变化

    Figure  12.  Ozone accumulation inside the chamber with different number of lamps

    图  13  等效系统质量随任务周期变化趋势

    Figure  13.  ESM increasing with the length of mission duration

    图  14  雾化臭氧洗衣方案与NASA在评估的微重力洗衣方案对比

    Figure  14.  Comparison of atomization and ozone laundry platform with other microgravity laundry plans

    图  15  空间站任务中雾化洗衣平台各项技术指标优化对于收益平衡时间的影响

    Figure  15.  Influence of parametrical optimization for Tb in space station missions

    图  16  深空探测任务中雾化洗衣平台各项技术指标优化对于收益平衡时间的影响

    Figure  16.  Influence of parametrical optimization for Tb in deep space explorations

    表  1  液滴与衣物附着过程仿真参数

    Table  1.   Simulation parameters for droplet-adhesion process on fabric

    Parameter Values
    Density of droplet, ρ/(kg·m–3) 1000
    Dynamic viscosity of droplet, µ/(Pa·s) 1.01×10–3
    Radius of droplet, r/µm 5
    Level set function, ϕ 0, 1
    Reinitialization velocity, γ/(m·s–1) 1
    Interface thickness, ε/µm 1.4
    下载: 导出CSV

    表  2  不同类型资源代价的等效系统质量系数

    Table  2.   ESM from different types of resources

    Equivalent system
    mass factors
    Space station Moon landing and deep space exploration
    Volume, Veq /(kg·m–3) 67 67
    Power consumption,
    Peq /(kg·kW–1)
    476 136
    Cool off, Ceq /(kg·kW–1) 324 65
    Personnel operation,
    CTeq /(kg·CM-h–1)
    0.8 0.6
    Percentage of wastewater treatment losses/(%) 3.67 3.67
    Equivalent mass of wastewater treatment/(kg·d–1) 12.9 12.9
    下载: 导出CSV

    表  3  雾化臭氧洗衣平台基本参数

    Table  3.   Atomization and ozone laundry platform parameters

    ParametersValue
    Weight of laundry platform/kg12
    Volume of the laundry platform/L125
    Power consumption for washing/washing time/(W·min–1)1.3333
    Power consumption for drying/drying time/(W·min–1)8
    Crew supporting time per week/h0.5
    Water consumption per wash/L0.4
    Washing quality per wash/kg0.8
    下载: 导出CSV
  • [1] DEMMLER M, WHITEHEAD N, PORITZ D, et al. CTSD-ADV-1466 Advanced exploration systems (AES) logistics reduction project: crew clothing care process development[S]. Houston: Crew and Thermal Systems Division, 2017
    [2] ARENDS A R, ROBINSON S K. Spaceflight exercise and textile laundering machine for improved human health[C]//Proceedings of the 52nd International Conference on Environmental Systems. Calgary: 2023 International Conference on Environmental Systems, 2023
    [3] PISCHULTI P K, DUKE T L, SMITH A L, et al. Surveying and assessing ‘smart’ technologies to identify potential applications for deep space human exploration missions[J]. Acta Astronaut, 2024, 222: 534-549 doi: 10.1016/j.actaastro.2024.02.036
    [4] 赵建福, 王双峰, 刘强, 等. 中国微重力科学研究回顾与展望[J]. 空间科学学报, 2021, 41(1): 34-45 doi: 10.11728/cjss2021.01.034

    ZHAO Jianfu, WANG Shuangfeng, LIU Qiang, et al. Retrospect and perspective on microgravity science in China[J]. Chinese Journal of Space Science, 2021, 41(1): 34-45 doi: 10.11728/cjss2021.01.034
    [5] BAGHEL V, RANJAN M. Numerical estimation of droplet motion on linear wettability gradient surface in microgravity environment[J]. Materials Today Communications, 2022, 32: 103916 doi: 10.1016/j.mtcomm.2022.103916
    [6] 周抗寒, 李俊荣, 刘成良, 等. 空间站废水的处理及管理[J]. 空间科学学报, 2002, 22(2): 169-176 doi: 10.3969/j.issn.0254-6124.2002.02.011

    ZHOU Kanghan, LI Junrong, LIU Chengliang, et al. Wastewater treatment and management in space station[J]. Chinese Journal of Space Science, 2002, 22(2): 169-176 doi: 10.3969/j.issn.0254-6124.2002.02.011
    [7] COLOMBO G, PUTNAM D, LUNSFORD T, et al. Single phase space laundry development[C]//Proceedings of the International Conference On Environmental Systems. Colorado Springs: NASA, 1993: 932092
    [8] MICHALEK W F, WAMBOLT S R, WHEELER A R, et al. Advanced Microgravity Compatible Integrated Laundry System (AMCILS) development[C]//Proceedings of the 47th International Conference on Environmental Systems. South Carolina: 47th International Conference on Environmental Systems, 2017
    [9] BAILEY V O, CANTU N, GARCIA G, et al. Laundry in space: Gravity Independent Laundry System (GILS)[C]//Proceedings of the 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Nashville: AIAA, 2012
    [10] ELLIS J, BIGELOW J, SHELANDER C, et al. Ultrasonic clothes washer/dryer combination for moon, Mars, and ISS applications[C]//Proceedings of the 52nd International Conference on Environmental Systems. Calgary: International Conference on Environmental Systems, 2023: 1-10
    [11] 苏引引, 吴笛, 段俐, 等. 微重力下离心式锥形两相洗衣机流场的数值模拟研究[J]. 载人航天, 2018, 24(1): 117-126 doi: 10.3969/j.issn.1674-5825.2018.01.020

    SU Yinyin, WU Di, DUAN Li, et al. Numerical simulation of flow field in centrifugal cone-shaped two-phase washing machine under microgravity[J]. Manned Spaceflight, 2018, 24(1): 117-126 doi: 10.3969/j.issn.1674-5825.2018.01.020
    [12] 汤凯利, 张华, 邓德喜, 等. 一种微重力下洗衣装置的设计与研究[J]. 载人航天, 2019, 25(3): 403-410 doi: 10.3969/j.issn.1674-5825.2019.03.019

    TANG Kaili, ZHANG Hua, DENG Dexi, et al. Design and research of a washing device used in microgravity[J]. Manned Spaceflight, 2019, 25(3): 403-410 doi: 10.3969/j.issn.1674-5825.2019.03.019
    [13] HUANG S N, LIU H W, WEI K M, et al. Impact of ozonation on disinfection byproducts formation from phenylalanine during chlorination[J]. Journal of Environmental Sciences, 2024, 144: 199-211 doi: 10.1016/j.jes.2023.08.030
    [14] FEJES V, SIMON G, MAKSZIN L, et al. Evaluation of the effect of ozone disinfection on forensic identification of blood, saliva, and semen stains[J]. Science :Times New Roman;">& Justice, 2024, 64(2): 151-158
    [15] EWERT M K, ORNDOFF E, SIVIK M R, et al. Clothes cleaning research for space exploration[C]//Proceedings of the 51st International Conference on Environmental Systems. St. Paul: International Conference on Environmental Systems, 2022: 1-12
    [16] HAN W B, CHEN X Y. Effect of geometry configuration on the merged droplet formation in a double T-junction[J]. Microgravity Science and Technology, 2019, 31(6): 855-864 doi: 10.1007/s12217-019-09720-y
    [17] ZOSCHKE K, BöRNICK H, WORCH E. Vacuum-UV radiation at 185 nm in water treatment-a review[J]. Water Research, 2014, 52: 131-145 doi: 10.1016/j.watres.2013.12.034
    [18] BERKOVICH Y A, BURYAK A A, OCHKOV O A, et al. Minimization of the equivalent system mass of a vitamin greenhouse with LED lighting for various scenarios of space missions[J]. Acta Astronautica, 2022, 198: 403-409 doi: 10.1016/j.actaastro.2022.05.003
    [19] ANDERSON M S, EWERT M K, KEENER J F. NASA/TP-2015-218570/REV1 Life support baseline values and assumptions document[S]. Houston: National Aeronautics and Space Administration, 2022
    [20] EWERT M K, JENG F F. Will astronauts wash clothes on the way to Mars?[C]//Proceedings of the 45th International Conference on Environmental Systems. Bellevue: International Conference on Environmental Systems, 2015
    [21] 国家市场监督管理总局, 国家标准化管理委员会. GB/T 19258.1-2022 杀菌用紫外辐射源 第1部分: 低气压汞蒸气放电灯[S]. 北京: 中国标准出版社, 2023

    State Administration for Market Regulation, Standardization Administration. GB/T 19258.1-2022 Ultraviolet radiation sources for germicidal purpose—part 1: low pressure mercury vapor discharge lamp[S]. Beijing: Standards Press of China, 2023
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  234
  • HTML全文浏览量:  46
  • PDF下载量:  27
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-04-15
  • 修回日期:  2024-09-05
  • 网络出版日期:  2024-09-09

目录

    /

    返回文章
    返回