面向SDGSAT-1卫星任务规划与指令生成的一体化软件设计及实现
doi: 10.11728/cjss2025.03.2024-0059 cstr: 32142.14.cjss.2024-0059
Integrated Software Design and Implementation for SDGSAT-1 Satellite Mission Planning and Command Generation
-
摘要: 面向SDGSAT-1卫星载荷包括热红外成像仪、城镇微光及近海多光谱成像仪, 3类载荷开机模式可选择单载荷开机和双载荷组合开机, 各类载荷观测时间根据载荷数据速率、光照条件、工作区域、数传时间及下传速率等约束确定, 实现了一种面向SDGSAT-1卫星多载荷、多约束条件下集任务规划与指令生成于一体的技术, 该技术成功应用于SDGSAT-1卫星满足任务规划需求, 规划生成满足卫星及载荷使用约束的有效载荷控制计划和数据接收计划, 针对生成的有效载荷控制计划编制有效载荷控制指令, 生成的数据接收计划编制数传接收指令, 最终通过指令发送模块发送给测控系统, 完成载荷在轨管理. 同时, 任务规划指令系统综合评估数传数据下传的各情形, 系统引入双站接力模式, 最大程度地提高卫星数传数据下传量.Abstract: The SDGSAT-1 satellite was launched at 10:19 Beijing time on 5 November 2021, using the Long March 6 carrier rocket at the Taiyuan Satellite Launch Center in China. The satellite carries three payloads: thermal infrared, low-light and multi-spectral imagers. Through the coordinated observation of the three payloads all day, it aims to achieve a detailed portrayal of the “traces of human activities”, which will provide data support for the study of indicators that characterize the interaction between humans and nature and the monitoring, evaluation and scientific research of the realization of global sustainable development goals. This paper aims to provide an efficient mission planning and instruction generation technology for the multi-payload system of the SDGSAT-1 satellite. First, the three payloads of the SDGSAT-1 satellite are analyzed in detail to determine their power-on options in different working modes. These modes include single-payload independent operation and dual-payload combined operation to adapt to different observation needs and task priorities. In order to ensure the efficient execution of the observation task, a set of algorithms is designed to optimize the observation time of the payload. The algorithm takes into account a variety of constraints, including but not limited to: payload data rate, lighting conditions, working area, data transmission time, downlink rate, etc. Based on these constraints, an integrated mission planning and command generation system is implemented. The system can automatically generate payload control plans and data reception plans that meet the usage constraints of the satellite and its payload. Through precise mission planning, we can ensure that the observation mission of the satellite during its orbit is efficiently executed while maximizing the efficiency of payload usage. In order to further improve the efficiency of data transmission, the satellite’s data transmission process is deeply analyzed, and an innovative dual-station relay transmission mode is introduced. This mode allows satellites to transmit data between different ground stations, and effectively increases the amount of satellite data transmitted through relay, especially when the communication between the satellite and the ground station is restricted. This paper develops an efficient, flexible and reliable mission planning and command generation technology by comprehensively considering the multi-payload characteristics and multiple constraints of the SDGSAT-1 satellite. The successful implementation of this technology not only improves the efficiency of satellite data acquisition and transmission, but also provides strong data support for achieving sustainable development goals.
-
表 1 SDGSAT-1不同卫星观测模式下约束条件
Table 1. Constraint of different SDGSAT-1 satellite observation modes
观测模式 载荷组合 观测约束条件 普查观测 热红外+微光
热红外+多谱段
微光
热红外
多谱段单轨工作限制: 小于12 min
太阳高度角限制
热红外: 无限制
微光: 不大于0°
多谱段: 不小于30°
满足观测条件前提下, 依据观测区域优先级进行观测; 每天合计热红外不大于2.4 h, 微光不大于1.2 h, 多谱段不小于1.2 h拓展观测
极夜观测热红外+微光 满月且月亮高度角大于24°条件下冬季观测北极, 夏季观测南极. 每次观测1~2 d 拓展观测
极昼观测热红外+多谱段 太阳角20°以上进行观测, 冬季观测南极, 夏季观测北极. 每次观测1~2 d 应急观测 多谱段或热红外 单轨观测时间不大于10 min; 观测频率不大于每天2次. 当圈不执行其他观测模式, 入境后进行数传任务 黑体定标 热红外 黑体测温稳定在250 K. 每次任务温控点依次设置为 260, 270, 280, 290, 300, 250 K. 任务的执行时间[T0–10 min,T0+20 min]需在全影区且不在SAA区, 300 K降低到温度点250 K的时间约为12 h 冷空定标 热红外 任务的执行时间[T0–10 min,T0+20 min]需在全影区且不在SAA区 表 2 地面站资源配置界面
Table 2. Ground station configuration interface
序号 站名称 经度/(°) 纬度/(°) 高程/m 最低跟踪角/(°) 最低接收仰角/(°) 1 密云站 116.8567 40.4508 109 3 5 2 三亚站 109.3099 18.3121 22 5 7 3 喀什站 75.99287 39.5051 1307 5 5 表 3 接力规划界面
Table 3. Payload data relay receiving planning interface
序号 站名称 进站时间 出站时间 接收开始时间 接收结束时间 轨道圈号 接收时长/s 下传模式 接力标识 1 密云站 2021-10-29 09:57:05 2021-10-29 10:07:11 2021-10-29 09:57:31 2021-10-29 10:01:32 182 241 常规 与下序站
接力2 三亚站 2021-10-29 10:03:38 2021-10-29 10:12:38 2021-10-29 10:04:02 2021-10-29 10:12:14 182 492 常规 与下序站
接力3 喀什站 2021-10-29 11:34:04 2021-10-29 11:41:03 2021-10-29 11:34:46 2021-10-29 11:40:22 183 336 常规 不接力 4 喀什站 2021-10-29 13:06:43 2021-10-29 13:16:36 2021-10-29 13:07:10 2021-10-29 13:16:10 184 540 常规 不接力 5 密云站 2021-10-29 20:35:29 2021-10-29 20:45:00 2021-10-29 20:35:57 2021-10-29 20:44:32 189 515 常规 不接力 6 三亚站 2021-10-29 22:03:57 2021-10-29 22:18:26 2021-10-29 22:04:20 2021-10-29 22:07:51 190 211 常规 与下序站
接力7 密云站 2021-10-29 22:09:49 2021-10-29 22:09:49 2021-10-29 22:10:21 2021-10-29 22:17:54 190 453 常规 与下序站
接力8 喀什站 2021-10-29 23:44:11 2021-10-29 23:54:16 2021-10-29 23:44:37 2021-10-29 23:53:50 191 553 常规 不接力 注 时刻均为北京时间 (BLT). 表 4 指令反演结果显示界面
Table 4. Instruction inversion result display interface
序号 指令码 指令名称 数据长度 校验和 开始时间 结束时间 数据量 指令内容 1 D145 数传星历表上注 66 9E89 2021-06-16
09:22:162021-06-16
22:44:208 EB9020FAB863… 序号 入境时间 入境时长/s 入境地面站代号 下传模式 接力标识 1 2021-06-16
09:22:16169 0x4 01b 10b 2 2021-06-16
22:31:03245 0x1 01b 10b 3 2021-06-16
22:37:39400 0x4 01b 01b 4 2021-06-17
00:06:15550 0x2 01b 11b 5 2021-06-17
01:41:26121 0x2 01b 11b 6 2021-06-17
01:44:31139 0x2 01b 11b 7 2021-06-17
07:39:24175 0x1 01b 11b 注 时刻均为北京时间(BLT). 表 5 指令协议XML文件
Table 5. Command protocol XML file
<FrameItem name="帧同步字" ID="1" sequence="1" bitsNum="16" role="Other" value="EB90" />
<FrameItem name="帧版本号" ID="2" sequence="2" bitsNum="4" role="Other" value="1100" />
<FrameItem name="通过标识" ID="3" sequence="3" bitsNum="1" role="Choose">
<Option name="A类帧">0</Option>
<Option name="B类帧">1</Option>
</FrameItem>
<FrameItem name="内务命令标识" ID="4" sequence="4" bitsNum="1" role="Choose">
<Option name="遥控应用数据">0</Option>
<Option name="内务命令">1</Option>
</FrameItem>
<FrameItem name="空闲位" ID="5" sequence="5" bitsNum="2" role="Other" value="00" />
<FrameItem name="航天器识别字" ID="6" sequence="6" bitsNum="16" role="Other" value="0033" />
<FrameItem name="虚拟信道识别字" ID="7" sequence="7" bitsNum="6" role="VirtualChannel">
<Option name="直接指令">18</Option>
<Option name="地测间接指令">12</Option>
<Option name="遥控间接指令">2 E</Option>
<Option name="UHF间接指令">1 A</Option>
<Option name="中继转发指令">13</Option>
</FrameItem>
<FrameItem name="帧长" ID="8" sequence="8" bitsNum="10" role="Length" addPara="-1">2-12,49</FrameItem>
<FrameItem name="帧序列号" ID="9" sequence="9" bitsNum="8" role="Seqence" />
<FrameItem name="段头" ID="10" sequence="10" bitsNum="2" role="Other" value="03" />
<FrameItem name="多路接收地址指针" ID="11" sequence="11" bitsNum="6" role="Other" value="00" />
<FrameItem name="段" ID="12" sequence="12" bitsNum="-1" role="Paragraph">
<FrameItem name="段版本号" ID="13" sequence="13" bitsNum="3" role="Other" value="00" />
<FrameItem name="段类型" ID="14" sequence="14" bitsNum="1" role="Other" value="01" />
<FrameItem name="段副导头标识" ID="15" sequence="15" bitsNum="1" role="Other" value="01" />
<FrameItem name="段TID" ID="16" sequence="16" bitsNum="1" role="Delay">
<Option name="实时">00</Option>
<Option name="延时">01</Option>
</FrameItem>表 6 工况指令详情
Table 6. Working condition instruction details
序号 间隔/s 执行时间(BLT) 指令类型 指令码 指令名称 参数 1 t0~250 s 2021-10-17 11:54:23 地支工况指令 D142 复接调制器载荷通道选择 十六进制参数B0B1:0x0A68; 红外相机主备份选择: 主份; 微光及多谱段主备份选择: 主份; 二进制参数: 0x0; 固定参数: 0x6868686868 表 7 指令反演部分结果
Table 7. Instruction inversion partial results
数据块内容 反演结果 0351F0A68
E06868686
868AAAA0
722247918
A0D555001
31F55AA00十六进制参数B0B1: 0A68(0x0A68)
红外相机主备份选择(b): 主份(1b)
微光及多谱段主备份选择(b): 主份(11b)
二进制参数(b): 00000(0x0)
固定参数(B): 6868686868(0x6868686868)
包校验(B): AAAA(1010101010101010) -
[1] 郭华东, 王力哲, 陈方, 等. 科学大数据与数字地球[J]. 科学通报, 2014, 59(12): 1047-1054GUO Huadong, WANG Lizhe, CHEN Fang, et al. Scientific big data and digital earth[J]. Chinese Science Bulletin, 2014, 59(35): 5066-5073 [2] GUO H D, DOU C Y, CHEN H Y, et al. SDGSAT-1: the world’s first scientific satellite for sustainable development goals[J]. Science Bulletin, 2023, 68(1): 34-38 doi: 10.1016/j.scib.2022.12.014 [3] LEVINSON R, NAG S, RAVINDRA V. Agile satellite planning for multi-payload observations for earth science[OL]. arXiv preprint arXiv: 2111.07042, 2021 [4] QI L T, LI L Y, NI X Y, et al. On-orbit spatial quality evaluation of SDGSAT-1 thermal infrared spectrometer[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 7507505 [5] ZHANG G H, LI X H, HU G X, et al. Mission planning issues of imaging satellites: summary, discussion, and prospects[J]. International Journal of Aerospace Engineering, 2021, 2020: 7819105 [6] 范凯, 崔本杰, 陈占胜, 等. 一种快速响应型小卫星的自主任务规划设计与应用[J]. 上海航天(中英文), 2021, 38(4): 31-37FAN Kai, CUI Benjie, CHEN Zhansheng, et al. Autonomous mission planning design and application of a fast responsive small satellite[J]. Aerospace Shanghai (Chinese :Times New Roman;">& English), 2021, 38(4): 31-37 [7] 张佳唯, 邢立宁, 张玮, 等. 基于统一资源编码的成像卫星联合任务规划算法框架[J]. 控制与决策, 2022, 37(6): 1497-1504ZHANG Jiawei, XING Lining, ZHANG Wei, et al. A united mission planning algorithm framework based on uniform resource encoding for imaging satellites[J]. Control and Decision, 2022, 37(6): 1497-1504 [8] PENG G S, SONG G P, XING L N, et al. An exact algorithm for agile earth observation satellite scheduling with time-dependent profits[J]. Computers :Times New Roman;">& Operations Research, 2020, 120: 104946 [9] 李菊芳, 白保存, 陈英武, 等. 多星成像调度问题基于分解的优化算法[J]. 系统工程理论与实践, 2009, 29(8): 134-143 doi: 10.3321/j.issn:1000-6788.2009.08.016LI Jufang, BAI Baocun, CHEN Yingwu, et al. Optimization algorithm based on decomposition for satellites observation scheduling problem[J]. Systems Engineering-Theory :Times New Roman;">& Practice, 2009, 29(8): 134-143 doi: 10.3321/j.issn:1000-6788.2009.08.016 [10] 张利宁, 黄小军, 邱涤珊, 等. 对地观测卫星任务规划的启发式动态调整算法[J]. 计算机工程与应用, 2011, 47(30): 241-245ZHANG Lining, HUANG Xiaojun, QIU Dishan, et al. Heuristic dynamic adjust of task scheduling for earth observing satellite[J]. Computer Engineering and Applications, 2011, 47(30): 241-245 [11] WU G H, WANG H L, PEDRYCZ W, et al. Satellite observation scheduling with a novel adaptive simulated annealing algorithm and a dynamic task clustering strategy[J]. Computers :Times New Roman;">& Industrial Engineering, 2017, 113: 576-588 [12] ZHANG J W, XING L N. An improved genetic algorithm for the integrated satellite imaging and data transmission scheduling problem[J]. Computers :Times New Roman;">& Operations Research, 2022, 139: 105626 [13] AGHEVLI A, BENCOMO A, MC CURDY M. Scheduling and Planning Interface for Exploration (SPIFe) [C]//Proceedings of International Conference on Automated Planning and Scheduling (ICAPS2011). Freiburg: ICAPS, 2011 [14] FRUTH T, LENZEN C, GROSS E, et al. The EnMAP mission planning system[M]//PASQUIER H, CRUZEN C A, SCHMIDHUBER M, et al. Space Operations: Inspiring Humankind's Future. Cham: Springer, 2019: 455-473 [15] LIU X L, FANG Y, CHEN J M, et al. Effective approaches to solve p-center problem via set covering and SAT[J]. IEEE Access, 2020, 8: 161232-161244 doi: 10.1109/ACCESS.2020.3018618 [16] 贺仁杰, 高鹏, 白保存, 等. 成像卫星任务规划模型、算法及其应用[J]. 系统工程理论与实践, 2011, 31(3): 411-422HE Renjie, GAO Peng, BAI Baocun, et al. Models, algorithms and applications to the mission planning system of imaging satellites[J]. Systems Engineering-Theory :Times New Roman;">& Practice, 2011, 31(3): 411-422 [17] 任望. 成像卫星任务规划子系统的设计与实现[D]. 北京: 北京交通大学, 2012REN Wang. Design and Implementation of Imaging Satellite Mission Planning Subsystem[D]. Beijing: Beijing Jiaotong University, 2012 [18] 许宇栋, 周敬博, 尹嘉昭, 等. 对地观测卫星任务规划策略及应用研究综述[J]. 无线电工程, 2021, 51(8): 681-690XU Yudong, ZHOU Jingbo, YIN Jiazhao, et al. Review of mission planning strategies and applications of earth observation satellites[J]. Radio Engineering, 2021, 51(8): 681-690 [19] 郭华东, 梁栋, 陈方, 等. 地球大数据促进联合国可持续发展目标实现[J]. 中国科学院院刊, 2021, 36(8): 874-884GUO Huadong, LIANG Dong, CHEN Fang, et al. Big earth data facilitates sustainable development goals[J]. Bulletin of Chinese Academy of Sciences, 2021, 36(8): 874-884 -
-