Impact of Ionospheric Model Corrections in Different Seasons of China on the SPP of GPS Systems
-
摘要: 针对中国区域, 分别采用Klobuchar模型、BDGIM模型、IGS电离层格网数据, 以及区域建模生成的CHNION, 对2022年3月、6月、9月、12月共4个月不同纬度测站进行标准单点定位(Standard Point Positioning, SPP), 通过比较SPP结果精度, 对多种电离层模型或数据在中国区域内的修正精度进行分析. 研究结果表明: 中国区域采用Klobuchar模型修正的SPP精度最差, 相比之下, BDGIM模型4个测站平均提高定位精度20%. 在中低纬度测站BJF1, ZLTG, HKSL上, 采用CHINON进行电离层延迟修正后, 3个测站的每月平均定位精度依次为1.65, 1.27, 3.2, 2.87 m, 采用IGS最终电离层格网数据进行电离层修正后, 3个测站的每月平均定位精度依次为1.6, 1.37, 3.1, 2.73 m.
-
关键词:
- 电离层 /
- 单点定位 /
- Klobuchar模型 /
- BDGIM模型
Abstract: For GNSS satellite signals traveling from the satellite to the ground, the ionosphere is an unavoidable path. At the same time, the ionosphere is also a major error source in GNSS PNT applications. At present, both BDS and GPS broadcast ionospheric error correction model parameters to users via navigation information. The BDS broadcasts the BDGIM model with 9 parameters, while the GPS use the Klobuchar model with 8 parameters. A systematic analysis of the impact of different ionospheric models or products on the accuracy of standard Single Point Positioning (SPP) can serve as a valuable reference for global single-frequency satellite navigation users in selecting suitable ionospheric error correction methods. This paper focuses on the Chinese region and evaluates SPP performance at different latitude stations using the Klobuchar model, BDGIM model, IGS ionospheric grid products, and regionally modeled CHNION products in March, June, September, and December 2022. By comparing SPP accuracy, the correction performance of various ionospheric models and products in China is analyzed. The results show that the Klobuchar model provides the lowest SPP accuracy in China. The BDGIM model improves the average positioning accuracy by 20% across four stations. For mid-latitude and low-latitude stations BJF1, ZLTG, and HKSL, using the CHINON product for ionospheric correction results in a monthly average precision is 1.65, 1.27, 3.2, and 2.87 m, respectively. with the IGS final product, the monthly average positioning precision is 1.6, 1.37, 3.1, and 2.73 m.-
Key words:
- Ionosphere /
- SPP(Single Point Positioning) /
- Klobuchar model /
- BDGIM model
-
表 1 2022年各测站SPP平均均方根误差统计(单位: m)
Table 1. Statistics of average RMS error of SPP at each station in 2022 (Unit: m)
Model HKSL ZLTG BJF1 MHTG 3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12 No Iono 9.8 8.5 9.9 8.8 8.0 7.1 7.9 6.4 - 6.0 5.1 4.3 5.0 5.3 4.9 4.0 IGS 1.9 1.5 3.4 3.0 1.3 1.3 3.3 3.0 - 1.3 2.6 2.2 0.8 1.2 2.5 2.4 Klobuchar 3.2 2.6 5.0 4.6 2.7 2.2 4.5 4.5 - 1.9 3.5 4.2 1.7 1.7 3.1 3.9 BDGIM 2.6 1.9 4.5 4.4 2.0 1.7 4.1 3.7 - 1.4 2.9 2.6 1.3 1.3 2.8 2.9 CHNION 1.8 1.4 3.8 3.4 1.5 1.2 3.5 3.1 - 1.2 2.3 2.1 1.7 1.6 3.1 2.9 -
[1] 王格. 北半球高纬度地区电离层闪烁特性研究[D]. 北京: 中国地质大学(北京), 2019. DOI: 10.27493/d.cnki.gzdzy.2019.000907WANG Ge. Study on Ionospheric Scintillation Characteristics in the High Latitudes of the Northern Hemisphere[D]. Beijing: China University of Geosciences (Beijing), 2019. DOI: 10.27493/d.cnki.gzdzy.2019.000907 [2] 袁运斌, 霍星亮, 张宝成. 近年来我国GNSS电离层延迟精确建模及修正研究进展[J]. 测绘学报, 2017, 46(10): 1364-1378 doi: 10.11947/j.AGCS.2017.20170349YUAN Yunbin, HUO Xingliang, ZHANG Baocheng. Research progress of precise models and correction for GNSS ionospheric delay in China over recent years[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1364-1378 doi: 10.11947/j.AGCS.2017.20170349 [3] 张铁红, 刘伟, 刘述春. 不同电离层投影函数对中纬度地区单频接收机定位精度的影响[J]. 城市勘测, 2022(4): 100-104 doi: 10.3969/j.issn.1672-8262.2022.04.023ZHANG Tiehong, LIU Wei, LIU Shuchun. Impact of different ionospheric mapping functions on the positioning accuracy of single-frequency receivers in mid-latitude regions[J]. Urban Geotechnical Investigation :Times New Roman;">& Surveying, 2022(4): 100-104 doi: 10.3969/j.issn.1672-8262.2022.04.023 [4] 袁运斌, 李敏, 霍星亮, 等. 北斗三号全球导航卫星系统全球广播电离层延迟修正模型(BDGIM)应用性能评估[J]. 测绘学报, 2021, 50(4): 436-447 doi: 10.11947/j.AGCS.2021.20200421YUAN Yunbin, LI Min, HUO Xingliang, et al. Research on performance of BeiDou global broadcast ionospheric delay correction model (BDGIM) of BDS-3[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 436-447 doi: 10.11947/j.AGCS.2021.20200421 [5] 中国卫星导航系统管理办公室. 北斗卫星导航系统空间信号接口控制文件公开服务信号 B2a(1.0版)[S]. 北京: 中国卫星导航系统管理办公室, 2017China Satellite Navigation Office. BeiDou Navigation Satellite System Signal In Space Interface Control Document Open Service Signal B2a (Version 1.0)[S]. Beijing: China Satellite Navigation Office, 2017 [6] WANG N B, LI Z S, YUAN Y B, et al. BeiDou Global Ionospheric delay correction Model (BDGIM): performance analysis during different levels of solar conditions[J]. GPS Solutions, 2021, 25(3): 97. doi: 10.1007/s10291-021-01125-y [7] 毛悦, 朱永兴, 宋小勇. 全球系统广播电离层模型精度分析[J]. 大地测量与地球动力学, 2020, 40(9): 888-891 doi: 10.14075/j.jgg.2020.09.002MAO Yue, ZHU Yongxing, SONG Xiaoyong. Accuracy analysis of broadcast ionosphere model of global navigation satellite system[J]. Journal of Geodesy and Geodynamics, 2020, 40(9): 888-891 doi: 10.14075/j.jgg.2020.09.002 [8] 鲍任杰, 唐成盼, 胡小工, 等. 北斗广播电离层模型精度评估研究[J/OL]. 北京航空航天大学学报, (2023-12-07). https://bhxb.buaa.edu.cn/bhzk/article/doi/10.13700/j.bh.1001-5965.2023.0588BAO Renjie, TANG Chengpan, HU Xiaogong, et al. Study on the accuracy evaluation of BeiDou broadcast ionospheric model[J/OL]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0588 [9] 从建锋. 基于SDCORS数据建立区域电离层模型及电离层扰动在地震监测中的应用[D]. 青岛: 山东科技大学, 2020CONG Jianfeng Establishment of Regional Ionospheric Model based on SDCORS Data and Application in Earthquakes Monitoring[D]. Qingdao: Shandong University of Science and Technology, 2020 [10] 李子申, 王宁波, 李敏, 等. 国际GNSS服务组织全球电离层TEC格网精度评估与分析[J]. 地球物理学报, 2017, 60(10): 3718-3729 doi: 10.6038/cjg20171003LI Zishen, WANG Ningbo, LI Min, et al. Evaluation and analysis of the global ionospheric TEC map in the frame of international GNSS services[J]. Chinese Journal of Geophysics, 2017, 60(10): 3718-3729 doi: 10.6038/cjg20171003 [11] 胡广保. 几种电离层模型对单频单点定位的影响分析[J]. 测绘与空间地理信息, 2020, 43(3): 153-156 doi: 10.3969/j.issn.1672-5867.2020.03.043HU Guangbao. Effect analysis of several types of ionospheric models on single-frequency single-point positioning[J]. Geomatics :Times New Roman;">& Spatial Information Technology, 2020, 43(3): 153-156 doi: 10.3969/j.issn.1672-5867.2020.03.043 [12] 胡海洋, 邹进贵, 司加强. 常用电离层模型对单点定位精度的影响分析[J]. 北京测绘, 2017(S1): 1-4 doi: 10.19580/j.cnki.1007-3000.2017.S1.001HU Haiyang, ZOU Jingui, SI Jiaqiang. Analysis of the influence of commonly used ionospheric model on single point positioning accuracy[J]. Beijing Surveying and Mapping, 2017(S1): 1-4 doi: 10.19580/j.cnki.1007-3000.2017.S1.001 [13] 丁毅涛, 郭美军, 范顺西, 等. 广播电离层模型精度评估分析[J]. 导航定位学报, 2022, 10(1): 53-63 doi: 10.3969/j.issn.2095-4999.2022.01.008DING Yitao, GUO Meijun, FAN Shunxi, et al. Accuracy evaluation of broadcast ionosphere model[J]. Journal of Navigation and Positioning, 2022, 10(1): 53-63 doi: 10.3969/j.issn.2095-4999.2022.01.008 [14] TIAN Y, LI S H, SHEN H, et al. Comparative analysis of BDGIM, NeQuick-G, and Klobuchar ionospheric broadcast models[J]. Astrophysics and Space Science, 2022, 367(8): 78 doi: 10.1007/s10509-022-04109-7 [15] CAI H L, CHEN G, JIAO W H, et al. An initial analysis and assessment on final products of iGMAS[C]//China Satellite Navigation Conference (CSNC). Singapore: Springer, 2016: 515-527 [16] 赵奕源, 吴文坛, 赵春梅, 等. 不同活跃状态下香港区域电离层建模分析[J]. 测绘科学, 2023, 48(8): 72-80 doi: 10.16251/j.cnki.1009-2307.2023.08.010ZHAO Yiyuan, WU Wentan, ZHAO Chunmei, et al. Analysis of ionospheric modeling in the Hong Kong region under different active states[J]. Science of Surveying and Mapping, 2023, 48(8): 72-80 doi: 10.16251/j.cnki.1009-2307.2023.08.010 [17] 张明泽, 徐爱功, 祝会忠, 等. 基于球谐函数模型的欧洲区域电离层模型[J]. 辽宁工程技术大学学报(自然科学版), 2022, 41(3): 225-233 doi: 10.11956/j.issn.1008-0562.2022.03.006ZHANG Mingze, XU Aigong, ZHU Huizhong, et al. European regional ionosphere model based on spherical harmonic model[J]. Journal of Liaoning Technical University (Natural Science), 2022, 41(3): 225-233 doi: 10.11956/j.issn.1008-0562.2022.03.006 [18] 赵海山, 杨力, 徐世依. 太阳活动高低年电离层TEC变化特性分析[J]. 导航定位学报, 2017, 5(1): 24-30 doi: 10.16547/j.cnki.10-1096.20170106ZHAO Haishan, YANG Li, XU Shiyi. Analysis ofionospheric TEC variation characteristics in solar activity years[J]. Journal of Navigation and Positioning, 2017, 5(1): 24-30 doi: 10.16547/j.cnki.10-1096.20170106 [19] 朱云聪. 电离层TEC与太阳活动参数的相关性研究[D]. 淄博: 山东理工大学, 2022ZHU Yuncong. Research on the Correlation between Ionospheric TEC and Solar Activity Parameters[D]. Zibo: Shandong University of Technology, 2022 -
-