留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国区域不同季节电离层修正对GPS系统SPP的影响

张春 王格 张旻剑 朱一龙 王偲偲

张春, 王格, 张旻剑, 朱一龙, 王偲偲. 中国区域不同季节电离层修正对GPS系统SPP的影响[J]. 空间科学学报. doi: 10.11728/cjss2025.03.2024-0073
引用本文: 张春, 王格, 张旻剑, 朱一龙, 王偲偲. 中国区域不同季节电离层修正对GPS系统SPP的影响[J]. 空间科学学报. doi: 10.11728/cjss2025.03.2024-0073
ZHANG Chun, WANG Ge, ZHANG Minjian, ZHU Yilong, WANG Sisi. Impact of Ionospheric Model Corrections in Different Seasons of China on the SPP of GPS Systems (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 689-702 doi: 10.11728/cjss2025.03.2024-0073
Citation: ZHANG Chun, WANG Ge, ZHANG Minjian, ZHU Yilong, WANG Sisi. Impact of Ionospheric Model Corrections in Different Seasons of China on the SPP of GPS Systems (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 689-702 doi: 10.11728/cjss2025.03.2024-0073

中国区域不同季节电离层修正对GPS系统SPP的影响

doi: 10.11728/cjss2025.03.2024-0073 cstr: 32142.14.cjss.2024-0073
详细信息
    作者简介:
    • 张春 男, 1990年3月出生于宁夏回族自治区固原市, 现为中国地质调查局西安矿产资源调查中心工程师, 主要从事地质测绘、遥感解译等方面的工作. E-mail: 472671066@qq.com
    通讯作者:
    • 王格 女, 1994年12月出生于陕西省渭南市, 现为中国科学院国家授时中心工程师, 主要研究方向为GNSS卫星导航系统的定位与授时、电离层建模等. E-mail: wangge@ntsc.ac.cn
  • 中图分类号: P352

Impact of Ionospheric Model Corrections in Different Seasons of China on the SPP of GPS Systems

  • 摘要: 针对中国区域, 分别采用Klobuchar模型、BDGIM模型、IGS电离层格网数据, 以及区域建模生成的CHNION, 对2022年3月、6月、9月、12月共4个月不同纬度测站进行标准单点定位(Standard Point Positioning, SPP), 通过比较SPP结果精度, 对多种电离层模型或数据在中国区域内的修正精度进行分析. 研究结果表明: 中国区域采用Klobuchar模型修正的SPP精度最差, 相比之下, BDGIM模型4个测站平均提高定位精度20%. 在中低纬度测站BJF1, ZLTG, HKSL上, 采用CHINON进行电离层延迟修正后, 3个测站的每月平均定位精度依次为1.65, 1.27, 3.2, 2.87 m, 采用IGS最终电离层格网数据进行电离层修正后, 3个测站的每月平均定位精度依次为1.6, 1.37, 3.1, 2.73 m.

     

  • 图  1  CHINION生成时穿刺点(蓝色)与试验站分布

    Figure  1.  Distribution of pierce points (blue) and test stations during the generation of CHINION products

    图  2  2022年3月HKSL测站不同电离层模型修正后的标准定位误差

    Figure  2.  Standard positioning errors at HKSL station after correction with different ionospheric models in March 2022

    图  3  2022年3月ZLTG测站不同电离层模型修正后的标准定位误差

    Figure  3.  Standard positioning errors at ZLTG station after correction with different ionospheric models in March 2022

    图  4  2022年3月MHTG测站不同电离层模型修正后的标准定位误差

    Figure  4.  Standard positioning errors at MHTG station after correction with different ionospheric models in March 2022

    图  5  2022年3月HKSL测站不同电离层模型修正后N, E, U三个方向定位误差

    Figure  5.  Position errors in the N, E, and U directions at HKSL station after correction with different ionospheric models in March 2022

    图  6  2022年3月ZLTG测站不同电离层模型修正后N, E, U三个方向定位误差

    Figure  6.  Position errors in the N, E, and U directions at ZLTG station after correction with different ionospheric models in March 2022

    图  7  2022年3月MHTG测站不同电离层模型修正后N, E, U三个方向定位误差

    Figure  7.  Position errors in the N, E, and U directions at MHTG station after correction with different ionospheric models in March 2022

    图  8  2022年6月HKSL测站不同电离层模型修正后的标准定位误差

    Figure  8.  Standard positioning errors at HKSL station after correction with different ionospheric models in June 2022

    图  9  2022年6月ZLTG测站不同电离层模型修正后的标准定位误差

    Figure  9.  Standard positioning errors at ZLTG station after correction with different ionospheric models in June 2022

    图  10  2022年6月BJF1测站不同电离层模型修正后的标准定位误差

    Figure  10.  Standard positioning errors at BJF1 station after correction with different ionospheric models in June 2022

    图  11  2022年6月MHTG测站不同电离层模型修正后的标准定位误差

    Figure  11.  Standard positioning errors at MHTG station after correction with different ionospheric models in June 2022

    图  12  2022年9月HKSL测站不同电离层模型修正后的标准定位误差

    Figure  12.  Standard positioning errors at HKSL station after correction with different ionospheric models in September 2022

    图  13  2022年9月ZLTG测站不同电离层模型修正后的标准定位误差

    Figure  13.  Standard positioning errors at ZLTG station after correction with different ionospheric models in September 2022

    图  14  2022年9月BJF1测站不同电离层模型修正后的标准定位误差

    Figure  14.  Standard positioning errors at BJF1 station after correction with different ionospheric models in September 2022

    图  15  2022年9月MHTG测站不同电离层模型修正后的标准定位误差

    Figure  15.  Standard positioning errors at MHTG station after correction with different ionospheric models in September 2022

    图  16  2022年12月HKSL测站不同电离层模型修正后的标准定位误差

    Figure  16.  Standard positioning errors at HKSL station after correction with different ionospheric models in December 2022

    图  17  2022年12月ZLTG测站不同电离层模型修正后的标准定位误差

    Figure  17.  Standard positioning errors at ZLTG station after correction with different ionospheric models in December 2022

    图  18  2022年12月BJF1测站不同电离层模型修正后的标准定位误差

    Figure  18.  Standard positioning errors at BJF1 station after correction with different ionospheric models in December 2022

    图  19  2022年12月MHTG测站不同电离层模型修正后的标准定位误差

    Figure  19.  Standard positioning errors at MHTG station after correction with different ionospheric models in December 2022

    图  20  四个测站上空电离层TEC时间序列

    Figure  20.  Time series of ionospheric Total Electron Content (TEC) above four monitoring stations

    图  21  2022年3月、6月、9月、12月F10.7指数变化时间序列

    Figure  21.  Time series of F10.7 index variations in March, June, September, and December 2022

    表  1  2022年各测站SPP平均均方根误差统计(单位: m)

    Table  1.   Statistics of average RMS error of SPP at each station in 2022 (Unit: m)

    Model HKSL ZLTG BJF1 MHTG
    3 6 9 12 3 6 9 12 3 6 9 12 3 6 9 12
    No Iono 9.8 8.5 9.9 8.8 8.0 7.1 7.9 6.4 6.0 5.1 4.3 5.0 5.3 4.9 4.0
    IGS 1.9 1.5 3.4 3.0 1.3 1.3 3.3 3.0 1.3 2.6 2.2 0.8 1.2 2.5 2.4
    Klobuchar 3.2 2.6 5.0 4.6 2.7 2.2 4.5 4.5 1.9 3.5 4.2 1.7 1.7 3.1 3.9
    BDGIM 2.6 1.9 4.5 4.4 2.0 1.7 4.1 3.7 1.4 2.9 2.6 1.3 1.3 2.8 2.9
    CHNION 1.8 1.4 3.8 3.4 1.5 1.2 3.5 3.1 1.2 2.3 2.1 1.7 1.6 3.1 2.9
    下载: 导出CSV
  • [1] 王格. 北半球高纬度地区电离层闪烁特性研究[D]. 北京: 中国地质大学(北京), 2019. DOI: 10.27493/d.cnki.gzdzy.2019.000907

    WANG Ge. Study on Ionospheric Scintillation Characteristics in the High Latitudes of the Northern Hemisphere[D]. Beijing: China University of Geosciences (Beijing), 2019. DOI: 10.27493/d.cnki.gzdzy.2019.000907
    [2] 袁运斌, 霍星亮, 张宝成. 近年来我国GNSS电离层延迟精确建模及修正研究进展[J]. 测绘学报, 2017, 46(10): 1364-1378 doi: 10.11947/j.AGCS.2017.20170349

    YUAN Yunbin, HUO Xingliang, ZHANG Baocheng. Research progress of precise models and correction for GNSS ionospheric delay in China over recent years[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1364-1378 doi: 10.11947/j.AGCS.2017.20170349
    [3] 张铁红, 刘伟, 刘述春. 不同电离层投影函数对中纬度地区单频接收机定位精度的影响[J]. 城市勘测, 2022(4): 100-104 doi: 10.3969/j.issn.1672-8262.2022.04.023

    ZHANG Tiehong, LIU Wei, LIU Shuchun. Impact of different ionospheric mapping functions on the positioning accuracy of single-frequency receivers in mid-latitude regions[J]. Urban Geotechnical Investigation :Times New Roman;">& Surveying, 2022(4): 100-104 doi: 10.3969/j.issn.1672-8262.2022.04.023
    [4] 袁运斌, 李敏, 霍星亮, 等. 北斗三号全球导航卫星系统全球广播电离层延迟修正模型(BDGIM)应用性能评估[J]. 测绘学报, 2021, 50(4): 436-447 doi: 10.11947/j.AGCS.2021.20200421

    YUAN Yunbin, LI Min, HUO Xingliang, et al. Research on performance of BeiDou global broadcast ionospheric delay correction model (BDGIM) of BDS-3[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(4): 436-447 doi: 10.11947/j.AGCS.2021.20200421
    [5] 中国卫星导航系统管理办公室. 北斗卫星导航系统空间信号接口控制文件公开服务信号 B2a(1.0版)[S]. 北京: 中国卫星导航系统管理办公室, 2017

    China Satellite Navigation Office. BeiDou Navigation Satellite System Signal In Space Interface Control Document Open Service Signal B2a (Version 1.0)[S]. Beijing: China Satellite Navigation Office, 2017
    [6] WANG N B, LI Z S, YUAN Y B, et al. BeiDou Global Ionospheric delay correction Model (BDGIM): performance analysis during different levels of solar conditions[J]. GPS Solutions, 2021, 25(3): 97. doi: 10.1007/s10291-021-01125-y
    [7] 毛悦, 朱永兴, 宋小勇. 全球系统广播电离层模型精度分析[J]. 大地测量与地球动力学, 2020, 40(9): 888-891 doi: 10.14075/j.jgg.2020.09.002

    MAO Yue, ZHU Yongxing, SONG Xiaoyong. Accuracy analysis of broadcast ionosphere model of global navigation satellite system[J]. Journal of Geodesy and Geodynamics, 2020, 40(9): 888-891 doi: 10.14075/j.jgg.2020.09.002
    [8] 鲍任杰, 唐成盼, 胡小工, 等. 北斗广播电离层模型精度评估研究[J/OL]. 北京航空航天大学学报, (2023-12-07). https://bhxb.buaa.edu.cn/bhzk/article/doi/10.13700/j.bh.1001-5965.2023.0588

    BAO Renjie, TANG Chengpan, HU Xiaogong, et al. Study on the accuracy evaluation of BeiDou broadcast ionospheric model[J/OL]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0588
    [9] 从建锋. 基于SDCORS数据建立区域电离层模型及电离层扰动在地震监测中的应用[D]. 青岛: 山东科技大学, 2020

    CONG Jianfeng Establishment of Regional Ionospheric Model based on SDCORS Data and Application in Earthquakes Monitoring[D]. Qingdao: Shandong University of Science and Technology, 2020
    [10] 李子申, 王宁波, 李敏, 等. 国际GNSS服务组织全球电离层TEC格网精度评估与分析[J]. 地球物理学报, 2017, 60(10): 3718-3729 doi: 10.6038/cjg20171003

    LI Zishen, WANG Ningbo, LI Min, et al. Evaluation and analysis of the global ionospheric TEC map in the frame of international GNSS services[J]. Chinese Journal of Geophysics, 2017, 60(10): 3718-3729 doi: 10.6038/cjg20171003
    [11] 胡广保. 几种电离层模型对单频单点定位的影响分析[J]. 测绘与空间地理信息, 2020, 43(3): 153-156 doi: 10.3969/j.issn.1672-5867.2020.03.043

    HU Guangbao. Effect analysis of several types of ionospheric models on single-frequency single-point positioning[J]. Geomatics :Times New Roman;">& Spatial Information Technology, 2020, 43(3): 153-156 doi: 10.3969/j.issn.1672-5867.2020.03.043
    [12] 胡海洋, 邹进贵, 司加强. 常用电离层模型对单点定位精度的影响分析[J]. 北京测绘, 2017(S1): 1-4 doi: 10.19580/j.cnki.1007-3000.2017.S1.001

    HU Haiyang, ZOU Jingui, SI Jiaqiang. Analysis of the influence of commonly used ionospheric model on single point positioning accuracy[J]. Beijing Surveying and Mapping, 2017(S1): 1-4 doi: 10.19580/j.cnki.1007-3000.2017.S1.001
    [13] 丁毅涛, 郭美军, 范顺西, 等. 广播电离层模型精度评估分析[J]. 导航定位学报, 2022, 10(1): 53-63 doi: 10.3969/j.issn.2095-4999.2022.01.008

    DING Yitao, GUO Meijun, FAN Shunxi, et al. Accuracy evaluation of broadcast ionosphere model[J]. Journal of Navigation and Positioning, 2022, 10(1): 53-63 doi: 10.3969/j.issn.2095-4999.2022.01.008
    [14] TIAN Y, LI S H, SHEN H, et al. Comparative analysis of BDGIM, NeQuick-G, and Klobuchar ionospheric broadcast models[J]. Astrophysics and Space Science, 2022, 367(8): 78 doi: 10.1007/s10509-022-04109-7
    [15] CAI H L, CHEN G, JIAO W H, et al. An initial analysis and assessment on final products of iGMAS[C]//China Satellite Navigation Conference (CSNC). Singapore: Springer, 2016: 515-527
    [16] 赵奕源, 吴文坛, 赵春梅, 等. 不同活跃状态下香港区域电离层建模分析[J]. 测绘科学, 2023, 48(8): 72-80 doi: 10.16251/j.cnki.1009-2307.2023.08.010

    ZHAO Yiyuan, WU Wentan, ZHAO Chunmei, et al. Analysis of ionospheric modeling in the Hong Kong region under different active states[J]. Science of Surveying and Mapping, 2023, 48(8): 72-80 doi: 10.16251/j.cnki.1009-2307.2023.08.010
    [17] 张明泽, 徐爱功, 祝会忠, 等. 基于球谐函数模型的欧洲区域电离层模型[J]. 辽宁工程技术大学学报(自然科学版), 2022, 41(3): 225-233 doi: 10.11956/j.issn.1008-0562.2022.03.006

    ZHANG Mingze, XU Aigong, ZHU Huizhong, et al. European regional ionosphere model based on spherical harmonic model[J]. Journal of Liaoning Technical University (Natural Science), 2022, 41(3): 225-233 doi: 10.11956/j.issn.1008-0562.2022.03.006
    [18] 赵海山, 杨力, 徐世依. 太阳活动高低年电离层TEC变化特性分析[J]. 导航定位学报, 2017, 5(1): 24-30 doi: 10.16547/j.cnki.10-1096.20170106

    ZHAO Haishan, YANG Li, XU Shiyi. Analysis ofionospheric TEC variation characteristics in solar activity years[J]. Journal of Navigation and Positioning, 2017, 5(1): 24-30 doi: 10.16547/j.cnki.10-1096.20170106
    [19] 朱云聪. 电离层TEC与太阳活动参数的相关性研究[D]. 淄博: 山东理工大学, 2022

    ZHU Yuncong. Research on the Correlation between Ionospheric TEC and Solar Activity Parameters[D]. Zibo: Shandong University of Technology, 2022
  • 加载中
图(21) / 表(1)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  22
  • PDF下载量:  4
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-06-03
  • 修回日期:  2024-09-24
  • 网络出版日期:  2025-03-11

目录

    /

    返回文章
    返回