留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

星载飞行时间系统中石墨烯薄膜和碳膜的性能对比仿真

徐鹏晖 孔令高 张爱兵 麻继杰

徐鹏晖, 孔令高, 张爱兵, 麻继杰. 星载飞行时间系统中石墨烯薄膜和碳膜的性能对比仿真[J]. 空间科学学报. doi: 10.11728/cjss2025.03.2024-0156
引用本文: 徐鹏晖, 孔令高, 张爱兵, 麻继杰. 星载飞行时间系统中石墨烯薄膜和碳膜的性能对比仿真[J]. 空间科学学报. doi: 10.11728/cjss2025.03.2024-0156
XU Penghui, KONG Linggao, ZHANG Aibing, MA Jijie. A Comparative Simulation Study of Graphene and Carbon Foils in Satellite-borne TOF System (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 795-809 doi: 10.11728/cjss2025.03.2024-0156
Citation: XU Penghui, KONG Linggao, ZHANG Aibing, MA Jijie. A Comparative Simulation Study of Graphene and Carbon Foils in Satellite-borne TOF System (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 795-809 doi: 10.11728/cjss2025.03.2024-0156

星载飞行时间系统中石墨烯薄膜和碳膜的性能对比仿真

doi: 10.11728/cjss2025.03.2024-0156 cstr: 32142.14.cjss.2024-0156
基金项目: 民用航天技术预先研究项目(D050103)和中国科学院空间科学战略性先导科技专项(XDA1535010202)共同资助
详细信息
    作者简介:
    • 徐鹏晖 男, 1996年10月出生于湖南省常德市, 现为中国科学院国家空间科学中心博士研究生, 主要从事空间粒子辐射探测、星载飞行时间系统的仿真与测试等方面的研究. E-mail: xupenghui19@mails.ucas.ac.cn
    • 张爱兵 男, 博士, 研究员, 主要从事空间探测技术研究及载荷研制方面的研究. E-mail: zhab@nssc.ac.cn
    • 麻继杰 男, 博士研究生, 主要从事火星空间环境粒子探测数据分析方面的研究. E-mail: majijie19@mails.ucas.ac.cn
    通讯作者:
    • 孔令高 男, 1981年出生于安徽省明光市, 现为南京大学深空探测科学与技术研究院教授, 博士生导师, 主要研究方向为空间环境探测技术研发及数据应用. E-mail: lgkong@nju.edu.cn
  • 中图分类号: V524

A Comparative Simulation Study of Graphene and Carbon Foils in Satellite-borne TOF System

  • 摘要: 在空间探测应用领域, 石墨烯薄膜因其低厚度特性, 成为一种受到研究者关注的新材料. 针对利用石墨烯薄膜替代碳膜作为星载薄膜式飞行时间(Time of Flight, TOF)系统中透射薄膜材料的应用情景, 采用粒子透射仿真软件SRIM和粒子光学仿真软件SIMION进行联用的方法, 进行石墨烯薄膜和碳膜在TOF系统中具体表现的计算机仿真模拟, 得到了飞行时间谱图、散斑分布与散角、探测效率等指标的对比结果. 仿真结果表明, 应用于星载TOF系统的石墨烯薄膜相比碳膜表现出更好的质谱分辨、更小的散斑半径和散角以及更高的探测效率, 表明使用石墨烯薄膜替代碳膜可明显提升薄膜式TOF系统的性能. 对该结论的进一步证明则需要对应的实验测试数据和结果. 相关结果可为后续对石墨烯薄膜进行实际测试以及其他相关研究提供参考.

     

  • 图  1  仿真使用的TOF系统设计(侧面剖面)

    Figure  1.  Design of the TOF system used in simulation (cross section view)

    图  2  粒子飞行轨迹

    Figure  2.  Trajectories of particles

    图  3  20 keV Ar+在石墨烯薄膜和碳膜中散射的SRIM仿真结果. (a)石墨烯薄膜的侧面视角, (b)石墨烯薄膜的背面视角, (c)碳膜的侧面视角, (d)碳膜的背面视角. (a)(c)横坐标为薄膜深度, 纵坐标为与入射点的水平偏移; (b)(d)坐标平面为与薄膜平行的平面, 白点分布为入射粒子轨迹分布

    Figure  3.  SRIM results of 20 keV Ar+ scattering in graphene and carbon foils. (a) Side view of graphene, (b) back view of graphene, (c) side view of carbon foil, (d) back view of carbon foil. In (a) and (c), the horizontal axis represents film depth and the vertical axis shows horizontal offset from the incident point. In (b) and (d), the coordinate plane is parallel to the film surface, with white dots indicating the distribution of incident particle trajectories

    图  4  15 keV O+的TOF峰形仿真结果. 灰色柱状图为仿真输出结果的统计分布, 黑色曲线为拟合曲线

    Figure  4.  TOF spectra of 15 keV O+ from simulation. The gray histogram represents the statistical distribution of simulation outputs, while the black curve denotes the fitting result

    图  5  图4中联用方法对应的出射粒子能量分布. 灰色柱状图为仿真输出的出射的粒子能量结果的统计分布, 黑色直线为入射能量

    Figure  5.  Energy distribution of the transmission particles in Fig. 4. The gray histogram displays the statistical distribution of transmission particle energies from simulation, while the black vertical line indicates the incident energy

    图  6  石墨烯薄膜和碳膜在20 keV产生的飞行时间谱对比. 黑灰色柱状图为离子的仿真结果统计分布, 黑色曲线为拟合曲线

    Figure  6.  TOF spectra of 20 keV from graphene and carbon foils. The dark gray histogram represents the statistical distribution of ion simulation results, while the black curve denotes the fitting result

    图  7  不同种类粒子的tc-E拟合曲线

    Figure  7.  tc-E relationship for different particles

    图  8  质量相对误差对离子能量的依赖性

    Figure  8.  Dependence of mass relative error on E

    图  9  石墨烯薄膜在20 keV产生的散斑等高线

    Figure  9.  Contours of 20 keV from graphene foils

    图  10  碳膜在20 keV产生的散斑等高线

    Figure  10.  Contours of 20 keV from carbon foils

    图  11  石墨烯薄膜和碳膜的散斑半径统计结果

    Figure  11.  Scattering radius of graphene and carbon foils

    表  1  由两种仿真方法和文献[7]实测数据得到的tc的对比

    Table  1.   Comparison of tc derived from two simulation methods and experimental data in Ref. [7]

    方法 tc (H+) /ns tc (O+) /ns tc (${\mathrm{O}}_2^+ $) /ns tc (${\mathrm{CO}}_2^+ $) /ns
    文献值 16.56 79.13 129.25 148.88
    联用方法值* 14.36 76.37 117.58 145.10
    单用方法值* 14.19 69.40
      联用方法值和单用方法值的tc是通过式(1)消除了不同的dE的影响得到的. 由于缺乏相关文献数据进行初始设置, 单用方法无法对${\mathrm{O}}_2^+ $和${\mathrm{CO}}_2^+ $进行仿真, 因此数据暂缺.
    下载: 导出CSV

    表  2  图6谱图分析结果

    Table  2.   Analysis of Fig. 6

    离子种类石墨烯薄膜碳膜
    tc /nsFWHM /nstc /nsFWHM /ns
    H+16.450.1417.070.59
    N+79.551.9986.367.37
    O+85.351.8492.877.72
    Ar+139.203.29162.8831.49
    下载: 导出CSV

    表  3  拟合反演相对原子质量的结果对比

    Table  3.   Contrast of derived relative atomic mass

    离子种类 真实值/u 石墨烯薄膜反演结果/u 碳膜反演结果/u
    H+ 1.01 1.02 1.07
    N+ 14.01 14.69 16.93
    O+ 16.00 16.76 19.38
    Ar+ 39.95 42.05 54.23
      u为相对原子质量单位, 1 u为碳原子质量的1/12, 即1 u=1.66×10–27 kg.
    下载: 导出CSV

    表  4  离子穿透石墨烯薄膜和碳膜后的散角

    Table  4.   Scattering angle of ions through graphene and carbon foils

    E/keVH+N+O+Ar+
    石墨烯薄膜/(°)碳膜/(°)石墨烯薄膜/(°)碳膜/(°)石墨烯薄膜/(°)碳膜/(°)石墨烯薄膜/(°)碳膜/(°)
    105.1711.4712.8048.7413.5651.9119.0057.24
    135.009.3310.2340.5011.2043.4716.3052.70
    154.818.309.1536.379.6938.9813.7650.94
    204.706.687.4527.157.7427.7111.0145.59
    254.665.866.6422.687.0123.489.7740.00
    304.655.466.0919.096.3320.318.4135.55
    下载: 导出CSV

    表  5  离子对石墨烯薄膜和碳膜的透过率

    Table  5.   Transmitting efficiency of ions through graphene and carbon foils

    E/keVH+N+O+Ar+
    石墨烯薄膜/(%)碳膜/%石墨烯薄膜/(%)碳膜/%石墨烯薄膜/(%)碳膜/(%)石墨烯薄膜/(%)碳膜/(%)
    1099.9899.9499.9194.5399.9392.9099.9969.87
    1399.9999.9599.9697.3899.9896.4899.9985.38
    1599.9999.9699.9898.1499.9897.6810090.99
    2099.9999.9899.9899.2499.9999.0710096.96
    2599.9999.9999.9999.6199.9999.5210098.85
    3099.9999.9999.9999.7899.9999.7210099.52
    下载: 导出CSV

    表  6  离子穿透石墨烯薄膜和碳膜后的TOF系统收集效率

    Table  6.   TOF system collecting efficiency of ions through graphene and carbon foils

    E/keVH+N+O+Ar+
    石墨烯薄膜/(%)碳膜/(%)石墨烯薄膜/(%)碳膜/(%)石墨烯薄膜/(%)碳膜/(%)石墨烯薄膜/(%)碳膜/(%)
    1099.7498.2793.8361.7293.0857.0891.9525.39
    1399.8399.0895.9773.0595.4969.2295.5243.16
    1599.8899.2996.9678.2796.3774.4796.7852.45
    2099.9499.6197.8886.1697.7183.8498.1768.18
    2599.9699.7498.6390.6198.4988.9198.8177.59
    3099.9699.8199.0393.1198.8091.8799.2684.01
    下载: 导出CSV

    表  7  灵敏度比值和计数相对误差比值

    Table  7.   Ratio of sensitivity and ratio of relative count error

    E/keVH+N+O+Ar+
    GC/GG/(%)δG/δC/(%)GC/GG/(%)δG/δC/(%)GC/GG/(%)δG/δC/(%)GC/GG/(%)δG/δC/(%)
    1098.4999.2462.2378.8957.0175.5019.2943.92
    1399.2199.6074.1586.1169.9583.6438.5862.11
    1599.3899.6979.2489.0275.5086.8949.3170.22
    2099.6599.8387.3793.4785.0292.2067.3482.06
    2599.7799.8991.5295.6789.8494.7877.6288.10
    3099.8499.9293.8296.8692.7396.3084.2391.78
    下载: 导出CSV
  • [1] RÈME H, BOSQUED J M, SAUVAUD J A, et al. The cluster ion spectrometry (CIS) experiment[J]. Space Science Reviews, 1997, 79(1): 303-350
    [2] YOUNG D T, BARRACLOUGH B L, BERTHELIER J J, et al. Cassini plasma spectrometer investigation[C]//Cassini/Huygens: A Mission to the Saturnian Systems. Denver: SPIE, 1996, 2803: 118-128
    [3] SAITO Y, YOKOTA S, ASAMURA K, et al. In-flight performance and initial results of plasma energy angle and composition experiment (PACE) on SELENE (Kaguya)[J]. Space Science Reviews, 2010, 154(1/2/3/4): 265-303
    [4] MCCOMAS D, ALLEGRINI F, BAGENAL F, et al. The solar wind around Pluto (SWAP) instrument aboard New horizons[J]. Space Science Reviews, 2008, 140(1/2/3/4): 261-313
    [5] LI L, WANG S J, ZHANG A B, et al. The plasma experiment of the YH-1 mission[C]//Seventh International Symposium on Instrumentation and Control Technology: Optoelectronic Technology and Instruments, Control Theory and Automation, and Space Exploration. Beijing: SPIE, 2008, 7129: 71292P
    [6] OWEN C J, BRUNO R, LIVI S, et al. The solar orbiter solar wind analyser (SWA) suite[J]. Astronomy :Times New Roman;">& Astrophysics, 2020, 642: A16
    [7] KONG L G, ZHANG A B, TIAN Z, et al. Mars ion and neutral particle analyzer (MINPA) for Chinese mars exploration mission (Tianwen-1): design and ground calibration[J]. Earth and Planetary Physics, 2020, 4(4): 333-344
    [8] 孔令高, 苏斌, 关燚炳, 等. 行星等离子体探测技术[J]. 地球与行星物理论评, 2021, 52(5): 459-472

    KONG Linggao, SU Bin, GUAN Yibing, et al. Planetary plasma measurement technology[J]. Reviews of Geophysics and Planetary Physics, 2021, 52(5): 459-472
    [9] FUNSTEN H O, SKOUG R M, GUTHRIE A A, et al. Helium, oxygen, proton, and electron (HOPE) mass spectrometer for the radiation belt storm probes mission[J]. Space Science Reviews, 2013, 179(1/2/3/4): 423-484
    [10] FUSELIER S A, BOCHSLER P, CHORNAY D, et al. The IBEX-Lo sensor[J]. Space Science Reviews, 2009, 146(1/2/3/4): 117-147
    [11] MCCOMAS D J, ALEXANDER N, ALLEGRINI F, et al. The Jovian Auroral distributions experiment (JADE) on the Juno Mission to Jupiter[J]. Space Science Reviews, 2017, 213(1/2/3/4): 547-643
    [12] DELCOURT D, SAITO Y, LEBLANC F, et al. The mass spectrum analyzer (MSA) on board the BepiColombo MMO[J]. Journal of Geophysical Research: Space Physics, 2016, 121(7): 6749-6761 doi: 10.1002/2016JA022380
    [13] MCFADDEN J P, KORTMANN O, CURTIS D, et al. MAVEN SupraThermal and thermal ion compostion (STATIC) instrument[J]. Space Science Reviews, 2015, 195(1/2/3/4): 199-256
    [14] MCCOMAS D J, ALLEGRINI F, BALDONADO J, et al. The two wide-angle imaging neutral-atom spectrometers (TWINS) NASA mission-of-opportunity[J]. Space Science Reviews, 2009, 142(1/2/3/4): 157-231
    [15] 孔令高, 张爱兵, 田峥, 等. 自主火星探测高集成离子与中性粒子分析仪[J]. 深空探测学报, 2019, 6(2): 142-149

    KONG Linggao, ZHANG Aibing, TIAN Zheng, et al. Integrated ion and neutral particle analyzer for Chinese Mars mission[J]. Journal of Deep Space Exploration, 2019, 6(2): 142-149
    [16] EBERT R W, ALLEGRINI F, FUSELIER S A, et al. Angular scattering of 1–50 keV ions through graphene and thin carbon foils: potential applications for space plasma instrumentation[J]. Review of Scientific Instruments, 2014, 85(3): 033302 doi: 10.1063/1.4866850
    [17] ALLEGRINI F, EBERT R W, NICOLAOU G, et al. Semi-empirical relationships for the energy loss and straggling of 1–50 keV hydrogen ions passing through thin carbon foils[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2015, 359: 115-119
    [18] ALLEGRINI F, EBERT R W, FUNSTEN H O. Carbon foils for space plasma instrumentation[J]. Journal of Geophysical Research: Space Physics, 2016, 121(5): 3931-3950 doi: 10.1002/2016JA022570
    [19] ALLEGRINI F, DAYEH M A. Thin carbon foil resistance to differential pressure[J]. Vacuum, 2014, 107: 124-128 doi: 10.1016/j.vacuum.2014.04.020
    [20] NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669 doi: 10.1126/science.1102896
    [21] LEE C, WEI X D, KYSAR J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science, 2008, 321(5887): 385-388 doi: 10.1126/science.1157996
    [22] ALLEGRINI F, EBERT R W, FUSELIER S A, et al. Charge state of ∼1 to 50 keV ions after passing through graphene and ultrathin carbon foils[J]. Optical Engineering, 2014, 53(2): 024101 doi: 10.1117/1.OE.53.2.024101
    [23] ALLEGRINI F, BEDWORTH P, EBERT R W, et al. Energy loss and straggling of 1~50 keV H, He, C, N, and O ions passing through few layer graphene[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2015, 358: 223-228
    [24] OLABI A G, ABDELKAREEM M A, WILBERFORCE T, et al. Application of graphene in energy storage device–a review[J]. Renewable and Sustainable Energy Reviews, 2021, 135: 110026 doi: 10.1016/j.rser.2020.110026
    [25] WU H Q, LINGHU C Y, LU H M, et al. Graphene applications in electronic and optoelectronic devices and circuits[J]. Chinese Physics B, 2013, 22(9): 098106 doi: 10.1088/1674-1056/22/9/098106
    [26] ZHONG Y J, ZHEN Z, ZHU H W. Graphene: fundamental research and potential applications[J]. FlatChem, 2017, 4: 20-32 doi: 10.1016/j.flatc.2017.06.008
    [27] 孔令高, 张爱兵, 郑香脂, 等. 热离子质谱分析仪的研制及定标[J]. 空间科学学报, 2017, 37(5): 585-592 doi: 10.11728/cjss2017.05.585

    KONG Linggao, ZHANG Aibing, ZHENG Xiangzhi, et al. Development and calibration of thermal ion mass spectrometer[J]. Chinese Journal of Space Science, 2017, 37(5): 585-592 doi: 10.11728/cjss2017.05.585
    [28] ZEIGER B R, SHIELDS M W, PAUL B, et al. Graphene foils for neutral atom detectors[C]//Earth Observing Systems XXIV. San Diego: SPIE, 2019, 11127: 111272C
    [29] VIRA A D, FERNANDES P A, FUNSTEN H O, et al. Angular scattering of protons through ultrathin graphene foils: application for time-of-flight instrumentation[J]. Review of Scientific Instruments, 2020, 91(3): 033302 doi: 10.1063/1.5134768
    [30] 孔令高, 张爱兵, 王世金, 等. 基于SIMION软件的空间等离子体探测器的数值仿真[J]. 中国空间科学技术, 2012, 32(4): 71-76

    KONG Linggao, ZHANG Aibing, WANG Shijin, et al. Numerical simulation analysis of space plasma detector based on SIMION[J]. Chinese Space Science and Technology, 2012, 32(4): 71-76
    [31] GALVIN A B, KISTLER L M, POPECKI M A, et al. The plasma and suprathermal ion composition (PLASTIC) investigation on the STEREO observatories[J]. Space Science Reviews, 2008, 136(1): 437-486
    [32] KONG L G, ZHANG A B, ZHENG X Z, et al. A satellite-borne miniature ion mass spectrometer for space plasma[J]. Chinese Journal of Space Science, 2015, 35(6): 755-762 doi: 10.11728/cjss2015.06.755
    [33] MCCOMAS D J, ALLEGRINI F, POLLOCK C J, et al. Ultrathin (∼10 nm) carbon foils in space instrumentation[J]. Review of Scientific Instruments, 2004, 75(11): 4863-4870 doi: 10.1063/1.1809265
    [34] ZIEGLER J F, ZIEGLER M D, BIERSACK J P. SRIM–the stopping and range of ions in matter (2010)[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268(11/12): 1818-1823
    [35] DAHL D A. SIMION for the personal computer in reflection[J]. International Journal of Mass Spectrometry, 2000, 200(1/2/3): 3-25
    [36] DIB A, AMMI H, MSIMANGA M, et al. Stopping force of (0.09–0.30) MeV/n 22Ti, 24Cr and 28Ni ions in aluminum oxide and titanium oxide thin foils by time of flight spectrometry[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2023, 543: 165099 doi: 10.1016/j.nimb.2023.165099
    [37] YIĞIT M, KARA A, YILMAZ A. A study on interactions of 14.7 MeV protons and 3.6 MeV Alphas in 93Nb target[J]. Fusion Science and Technology, 2024, 80(2): 156-165 doi: 10.1080/15361055.2023.2211190
    [38] 孙立涛, 徐涛, 尹奎波. 石墨烯及相关二维材料显微结构表征[M]. 北京: 化学工业出版社, 2018

    SUN Litao, XU Tao, YIN Kuibo. Microstructural Characterization of Graphene and Related 2D Materials[M]. Beijing: Chemical Industry Press, 2018
    [39] WANG C Y, XING Y W, LEI Y Z, et al. Adsorption of water on carbon materials: the formation of “water bridge” and its effect on water adsorption[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 631: 127719 doi: 10.1016/j.colsurfa.2021.127719
    [40] STANCIK A L, BRAUNS E B. A simple asymmetric lineshape for fitting infrared absorption spectra[J]. Vibrational Spectroscopy, 2008, 47(1): 66-69 doi: 10.1016/j.vibspec.2008.02.009
    [41] WÜEST M, EVANS D S, VON STEIGER R. Calibration of Particle Instruments in Space Physics[M]. Noordwijk: The International Space Science Institute, 2007.
  • 加载中
图(11) / 表(7)
计量
  • 文章访问数:  150
  • HTML全文浏览量:  38
  • PDF下载量:  7
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-11-05
  • 修回日期:  2025-02-11
  • 网络出版日期:  2025-02-12

目录

    /

    返回文章
    返回