New Denoising Method based on the Contribution Value Parameters of the Medium Frequency Radar Antenna
-
摘要: 全相关分析法(Full Correlation Analysis, FCA)是常用的中频 (Medium Frequency Radar, MF)雷达风场反演算法, 但其对噪声较为敏感, 对噪声的有效处理可以帮助提升FCA方法在MF雷达风场反演中的准确性. 目前, MF雷达广泛采用的多项式拟合降噪法在不同噪声环境下的处理能力不一致, 导致MF雷达所能观测到的有效风场数据变少, 制约了MF雷达在MLT区域风场观测的应用前景. 因此, 寻找一类对噪声强度不敏感的降噪方法是提高MF雷达大气风场反演有效性的一条新思路. 本文首次将天线贡献值参数引入MF雷达, 提出了以天线贡献值参数为评价标准的MF-AH算法,对MF雷达接收信号生成的相关函数进行有效降噪处理. 将该算法与现有成熟雷达的多项式拟合方法相比, 通过模型数据和实测数据验证, MF-AH算法在低信噪比条件下将纬向风速和经向风速的误差降低了约 20%. 同时, 该算法摒弃了以噪声为核心评价指标的限制, 显著提升了风场数据的有效性和丰富性.Abstract: The wind field of the Mesosphere and Lower Thermosphere (MLT) is an important parameter for studying the dynamics of the middle and upper atmosphere. Medium Frequency Radar (MF Radar) is one of the important techniques for observing the atmospheric wind field in the MLT region. Full Correlation Analysis (FCA) is a commonly used inversion algorithm for MF radar wind fields, but it is highly sensitive to noise. Effective noise processing can significantly enhance the accuracy of the FCA method in MF radar wind field inversion. Currently, the polynomial fitting denoising method widely used in MF radar exhibits inconsistent performance in different noise environments, leading to a reduction in the amount of valid wind field data that MF radar can observe, which restricts its application prospects for wind field observation in the MLT region. To address this challenge, this study introduces the antenna contribution parameter into MF radar for the first time and proposes the MF-AH algorithm, which uses the antenna contribution parameter as the evaluation criterion to effectively reduce noise in the correlation functions generated from MF radar signals. Compared with the conventional polynomial fitting method, the MF-AH algorithm, validated by both simulation and experimental data, reduces zonal and meridional wind speed errors by approximately 20% under low Signal-to-Noise Ratio (SNR) conditions. Moreover, the algorithm eliminates reliance on noise as the primary evaluation metric, significantly enhancing the effectiveness and richness of wind field data.
-
表 1 散射体和标准大气设置
Table 1. Scatterers and standard atmosphere settings
模型参数 中频雷达 散射体的数量$N$ 1000 速度大小$ V $/ (m·s–1) 50 速度方向$ \theta $/(°) 15 方位敏感性$ {\theta _{\mathrm{s}}} $/(°) 10.4 表 2 雷达参数配置
Table 2. Radar parameter configuration
模型参数 中频雷达 雷达频率$ {f_{_0}} $ /(MHz) 2 雷达照射高度范围/(km) 70~90 雷达照射宽度范围/(km) –20~20 方位敏感性$ {\theta _s} $/(°) 10.4 采样时间$ \Delta t $/个 0.4 时间序列样本$ N $/(s) 256 总时序持续时间$ N\Delta t $/(°) 102.4 反射天线半波束宽度$ {\theta _t} $/(°) 15 发射波束指向角$ {\theta _a} $/(m) 0 距离门宽度${r_e}$/(m) 2000 接收线间的间距$ {d_{_{ij}}} $/(m) 200 -
[1] YI W, XUE X H, REID I M, et al. Climatology of the mesopause relative density using a global distribution of meteor radars[J]. Atmospheric Chemistry and Physics, 2019, 19(11): 7567-7581. doi: 10.5194/acp-19-7567-2019 [2] YI W, XUE X H, REID I M, et al. Climatology of interhemispheric mesopause temperatures using the high-latitude and middle-latitude meteor radars[J]. Journal of Geophysical Research Atmospheres, 2021, 126(6): e2020JD034301. doi: 10.1029/2020JD034301 [3] YI W, XUE X H, CHEN J S, et al. Estimation of mesopause temperatures at low latitudes using the kunming meteor radar[J]. Radio Science, 2016, 51(3): 130-141. doi: 10.1002/2015RS005722 [4] ZENG J, YI W, XUE X H, et al. Comparison between the mesospheric winds observed by two collocated meteor radars at low latitudes[J]. Remote Sensing, 2022, 14(10): 2354. doi: 10.3390/rs14102354 [5] VENKATESH V, FRASIER S J. Simulation of spaced antenna wind retrieval performance on an X-Band active phased array weather radar[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(7): 1447-1459. doi: 10.1175/JTECH-D-11-00203.1 [6] 赵军. 武汉中频雷达总体设计与若干关键技术研究[D]. 武汉: 武汉大学, 2009ZHAO Jun. Research on General Design and Key Technologies of Wuhan MF Radar[D]. Wuhan: Wuhan University, 2009 [7] ATRAD. Atrad radar system software reference manual[OL]. [2025-02-17]. https://www.atrad.com.Au [8] CHEN J S, ZHANG Y, WANG L M, et al. Polynomial fitting-based noise reduction for correlation functions in medium-frequency radar[J]. Atmosphere, 2024, 15(8): 899. doi: 10.3390/atmos15080899 [9] DOVIAK R J, LATAITIS R J, HOLLOWAY C L. Cross correlations and cross spectra for spaced antenna wind profilers: 1. theoretical analysis[J]. Radio Science, 1996, 31(1): 157-180. doi: 10.1029/95RS02318 [10] HOLDSWORTH D A, REID I M. A simple model of atmospheric radar backscatter: description and application to the full correlation analysis of spaced antenna data[J]. Radio Science, 1995, 30(4): 1263-1280. doi: 10.1029/95RS00645 [11] COHN S A, HOLLOWAY C L, ONCLEY S P, et al. Validation of a UHF spaced antenna wind profiler for high-resolution boundary layer observations[J]. Radio Science, 1997, 32(3): 1279-1296. doi: 10.1029/97RS00578 [12] HOLDSWORTH D A. Signal analysis with applications to atmospheric radars[D]. Adelaide: University of Adelaide, 1995 [13] KUMAR S, RAO T N, RAO M D, et al. Multi-Receiver augmentation to advanced Indian MST Radar (AIR)—implementation of spaced antenna technique[J]. Radio Science, 2021, 56(9): e2021RS007263. doi: 10.1029/2021RS007263 [14] REID I M. Radar observtions of stratified layers in the mesosphere and lower thermosphere (50-100 Km)[J]. Advances in Space Research, 1990, 10(10): 7-19. doi: 10.1016/0273-1177(90)90002-H [15] HOCKING W K, RüSTER R, CZECHOWSKY P. Absolute reflectivities and aspect sensitivities of VHF radio wave scatterers measured with the sousy radar[J]. Journal of Atmospheric and Terrestrial Physics, 1986, 48(2): 131-144. doi: 10.1016/0021-9169(86)90077-2 [16] 赵蕾, 陈金松, 李娜, 等. 昆明MF雷达及初步探测结果[J]. 空间科学学报, 2011, 31(1): 27-33 doi: 10.11728/cjss2011.01.027ZHAO Lei, CHEN Jinsong, LI Na, et al. MF radar in kunming and its preliminary observation results[J]. Chinese Journal of Space Science, 2011, 31(1): 27-33 doi: 10.11728/cjss2011.01.027 -
-