留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天问二号任务目标小行星 (469219) Kamo‘oalewa的自转特征与表面热环境

应佳峻 季江徽 姜浩轩 谭东杰 胡寿村 包纲

应佳峻, 季江徽, 姜浩轩, 谭东杰, 胡寿村, 包纲. 天问二号任务目标小行星 (469219) Kamo‘oalewa的自转特征与表面热环境[J]. 空间科学学报. doi: 10.11728/cjss2025.03.2025-yg04
引用本文: 应佳峻, 季江徽, 姜浩轩, 谭东杰, 胡寿村, 包纲. 天问二号任务目标小行星 (469219) Kamo‘oalewa的自转特征与表面热环境[J]. 空间科学学报. doi: 10.11728/cjss2025.03.2025-yg04
YING Jiajun, JI Jianghui, JIANG Haoxuan, TAN Dongjie, HU Shoucun, BAO Gang. Rotational Characteristics and Surface Thermal Environment of Asteroid (469219) Kamo‘oalewa: Target of the Tianwen-2 Mission (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 736-748 doi: 10.11728/cjss2025.03.2025-yg04
Citation: YING Jiajun, JI Jianghui, JIANG Haoxuan, TAN Dongjie, HU Shoucun, BAO Gang. Rotational Characteristics and Surface Thermal Environment of Asteroid (469219) Kamo‘oalewa: Target of the Tianwen-2 Mission (in Chinese). Chinese Journal of Space Science, 2025, 45(3): 736-748 doi: 10.11728/cjss2025.03.2025-yg04

天问二号任务目标小行星 (469219) Kamo‘oalewa的自转特征与表面热环境

doi: 10.11728/cjss2025.03.2025-yg04 cstr: 32142.14.cjss.2025-yg04
基金项目: 国家自然科学基金项目共同资助(12150009, 12033010, 12303066)
详细信息
    作者简介:
    • 应佳峻 男, 1999年11月出生于江苏省苏州市, 现为中国科学技术大学天文与空间科学学院(紫金山天文台)在读博士研究生. 主要研究方向为太阳系小天体物理特性研究. E-mail: jjying@pmo.ac.cn
    通讯作者:
    • 季江徽 男, 1973 年10 月出生于江苏如东. 中国科学院紫金山天文台研究员, 博士生导师. 主要研究方向为系外行星、原行星盘与太阳系小天体. E-mail: jijh@pmo.ac.cn
  • 中图分类号: P185

Rotational Characteristics and Surface Thermal Environment of Asteroid (469219) Kamo‘oalewa: Target of the Tianwen-2 Mission

  • 摘要: 详细分析了近地小行星Kamo‘oalewa的轨道特征、自转参数以及与地球的相对运动, 通过对光变曲线的拟合, 初步确定了该小行星自转轴的指向 ($ \lambda =67. 9°\pm {3. 1}^{\circ },\;\beta =-46. 0°\pm {10. 6}^{\circ } $). 模拟未来天问二号空间任务对该小行星的探测过程, 得到了探测器在接近小行星过程中可能观测到的视星等级的变化情况. 利用先进热物理模型 (ATPM), 对Kamo‘oalewa的表面温度分布进行详细分析, 揭示该小行星在不同热惯量条件下的详细温度分布特征. 基于分析对未来深入研究该天体的路径进行了展望, 强调高分辨率探测设备及长期观测数据对提高小行星旋转特性和轨道参数精度的重要意义. 天问二号任务的顺利实施将为进一步揭示小行星的起源与演化历史提供宝贵的数据支撑.

     

  • 图  1  不同自转轴指向的光变曲线拟合图. 蓝色曲线代表的是不同自转轴指向先验下的光变曲线仿真

    Figure  1.  Fitting plots of light curves pointing to different axes of rotation. The blue curves represent the simulation of the optical curves with different axis of rotation pointing priors

    图  2  自转轴指向的拟合结果

    Figure  2.  Fitting results of spin axis orientation

    图  3  加入椭球轴比 a/b 后的自转轴指向的概率密度

    Figure  3.  Probability density distribution of the rotation axis direction incorporating the ellipsoid axis ratio a/b

    图  4  模拟探测器距离小行星 4.4×104 km拍摄的背景星图

    Figure  4.  Background star image obtained by the probe at a distance of 4.4×104 kilometres from the asteroid

    图  5  探测器接近过程中小行星视星等变化趋势和范围

    Figure  5.  Variation trends and range of the asteroid’s apparent magnitude during the probe’s approach

    图  6  小行星自转引起的相对视星等变化仿真

    Figure  6.  Simulation of relative apparent magnitude variations caused by asteroid rotation

    图  7  近地小行星热惯量与尺寸分布. 红色菱形数据点从左到右分别代表Kamo‘oalewa, Itokawa‎[31], Bennu‎[33], Ryugu‎[32]和Eros‎[31]

    Figure  7.  Distribution of thermal inertia and size for near-Earth asteroids. The red diamond data points from left to right represent Kamo‘oalewa, Itokawa‎[31], Bennu‎[33], Ryugu‎[32], and Eros‎[31]

    图  8  Kamo‘oalewa不同自转轴指向的热物理特性拟合结果

    Figure  8.  Kamo‘oalewa fitting results of the thermophysical properties for different orientations of the spin axis

    图  9  Kamo‘oalewa不同平均热惯量的表面温度分布. (a)~(c)是平均热惯量为$ 400\text{J}\cdot {\text{m}}^{-2}\cdot {\text{s}}^{-0.\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }5}\cdot {\text{K}}^{-1} $时的温度分布, (d)~(f)是平均热惯量为$ 500\text{J}\cdot {\text{m}}^{-2}\cdot {\text{s}}^{-0.\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }5}\cdot {\text{K}}^{-1} $时的温度分布

    Figure  9.  Kamo‘oalewa Surface temperature distribution plots for different mean thermal inertia. (a)~(c) are the temperature distributions at a mean thermal inertia of $ 400\text{J}\cdot {\text{m}}^{-2}\cdot {\text{s}}^{-0.5}\cdot {\text{K}}^{-1} $, and (d)~(f) are the temperature distributions at a mean thermal inertia of $ 500\text{J}\cdot {\text{m}}^{-2}\cdot {\text{s}}^{-0.\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }\mathrm{ }5}\cdot {\text{K}}^{-1} $

    表  1  四颗小行星的热惯量估计结果

    Table  1.   Thermal inertia estimations for four asteroids

    Object Value/
    ($ \text{J}\cdot {\text{m}}^{-2}\cdot {\text{s}}^{-0.5}\cdot {\text{K}}^{-1} $)
    Ref.
    (433) Eros $ \varGamma =150\pm 50 $ ‎[31]
    (25143) Itokawa $ \varGamma =700\pm 100 $ ‎[31]
    (162173) Ryugu $ \varGamma =225\pm 45 $ ‎[32]
    (101955) Bennu $ \varGamma =350\pm 20 $ ‎[33]
    下载: 导出CSV
  • [1] THOLEN J D, RAMANJOOLOO Y, FOHRING D, et al. A potpourri of near-Earth asteroid observations[C]//American Astronomical Society, DPS Meeting. 2016
    [2] DE LA FUENTE MARCOS C, DE LA FUENTE MARCOS R. Asteroid (469219) 2016 HO3, the smallest and closest earth quasi-satellite[J]. Monthly Notices of the Royal Astronomical Society, 2016, 462(4): 3441-3456 doi: 10.1093/mnras/stw1972
    [3] BENFORD J. Looking for lurkers: Co-orbiters as SETI observables[J]. The Astronomical Journal, 2019, 158(4): 150 doi: 10.3847/1538-3881/ab3e35
    [4] FENUCCI M, NOVAKOVIĆ B. The Role of the Yarkovsky Effect in the long-term dynamics of Asteroid (469219) Kamo‘oalewa[J]. The Astronomical Journal, 2021, 162(6): 227 doi: 10.3847/1538-3881/ac2902
    [5] HU S C, LI B, JIANG H X, et al. Peculiar orbital Characteristics of Earth Quasi-Satellite 469219 Kamo‘oalewa: Implications for the yarkovsky detection and orbital uncertainty propagation[J]. The Astronomical Journal, 2023, 166(4): 178 doi: 10.3847/1538-3881/acf8cc
    [6] SHARKEY B N L, REDDY V, MALHOTRA R, et al. Lunar-like silicate material forms the Earth quasi-satellite (469219) 2016 HO3 Kamoʻoalewa[J]. Communications Earth :Times New Roman;">& Environment, 2021, 2(1): 231
    [7] WINTER O, MOTAES R, GOMES L, et al. On the possibility that 2016 HO3 Kamo‘oalewa was a piece of the Moon[C]//44th COSPAR Scientific Assembly. 2022, 44: 274
    [8] ZHANG P F, LI Y, ZHANG G Z, et al. (469219) Kamo'OALEWA, a Space-Weathering-Matured LL-Chondrite-Like Small NEA: Target of the Tianwen-2 Sample Return Mission[C]//Europlanet Science Congress 2024. Berlin: Freie Universität, 2024
    [9] JIAO Y F, CHENG B, HUANG Y K, et al. Asteroid Kamo‘oalewa’s journey from the lunar Giordano Bruno crater to Earth 1: 1 resonance[J]. Nature Astronomy, 2024, 8(7): 819-826 doi: 10.1038/s41550-024-02258-z
    [10] HEILIGERS J, FERNANDEZ J M, STOHLMAN O R, et al. Trajectory design for a solar-sail mission to asteroid 2016 HO3[J]. Astrodynamics, 2019, 3(3): 231-246 doi: 10.1007/s42064-019-0061-1
    [11] VENIGALLA C, BARESI N, AZIZ J D, et al. Near-Earth Asteroid Characterization and Observation (NEACO) mission to asteroid (469219) 2016 HO3[J]. Journal of Spacecraft and Rockets, 2019, 56(4): 1121-1136 doi: 10.2514/1.A34268
    [12] CHI Z M, LI H Y, JIANG F H, et al. Power-limited low-thrust trajectory optimization with operation point detection[J]. Astrophysics and Space Science, 2018, 363(6): 112 doi: 10.1007/s10509-018-3336-8
    [13] HUANG J C, ZHANG X J, WANG T, et al. Small body exploration in China[C]//14th Europlanet Science Congress. 2020 (https://meetingorganizer.copernicus.org/EPSC2020/EPSC2020-1126.html)
    [14] ZHANG T, WANG B, WEI H Y, et al. Review on planetary regolith-sampling technology[J]. Progress in Aerospace Sciences, 2021, 127: 100760 doi: 10.1016/j.paerosci.2021.100760
    [15] ZHANG T, XU K, DING X L. China’s ambitions and challenges for asteroid-comet exploration[J]. Nature Astronomy, 2021, 5(8): 730-731 doi: 10.1038/s41550-021-01418-9
    [16] HUANG J C, JI J H, YE P J, et al. The Ginger-shaped Asteroid 4179 Toutatis: new Observations from a Successful Flyby of Chang’E-2[J]. Scientific Reports, 2013, 3(1): 3411 doi: 10.1038/srep03411
    [17] LI Y, ZHAO Y H. The Toutatis (4179) boulders: shallow slope in size distribution and shape statistics[J]. Solar System Research, 2023, 57(5): 495-504 doi: 10.1134/S0038094623050088
    [18] ZHAO Y, JI J. Study on rotational parameters for asteroid 4179 Toutatis from chang’E-2’s close flyby[C]//Serendipities in the Solar System and Beyond. Taiwan, China: National Central University, 2018, 513: 111
    [19] HU S C, JI J H, RICHARDSON D C, et al. The formation mechanism of 4179 Toutatis' elongated bilobed structure in a close Earth encounter scenario[J]. Monthly Notices of the Royal Astronomical Society, 2018, 478(1): 501-515 doi: 10.1093/mnras/sty1073
    [20] JIANG Y, JI J H, HUANG J C, et al. The distribution and source of boulders on asteroid 4179 Toutatis[J]. Proceedings of the International Astronomical Union, 2015, 10(S318): 153-155 doi: 10.1017/S1743921315007280
    [21] JI J H, JIANG Y, ZHAO Y H, et al. Chang’E-2 spacecraft observations of asteroid 4179 Toutatis[J]. Proceedings of the International Astronomical Union, 2015, 10(S318): 144-152 doi: 10.1017/S1743921315008674
    [22] JI J H, JIANG Y, ZHAO Y H. New observations of asteroid (4179) Toutatis as closely observed by Chang’E-2[J]. IAU General Assembly, 2015, 29: 2256604
    [23] ZHAO Y H, JI J H, HUANG J C, et al. Orientation and rotational parameters of asteroid 4179 Toutatis: new insights from Chang’E-2’s close flyby[J]. Monthly Notices of the Royal Astronomical Society, 2015, 450(4): 3620-3632 doi: 10.1093/mnras/stv792
    [24] BARUCCI M A, FULCHIGNONI M, JI J H, et al. The Flybys of Asteroids (2867) Šteins, (21) Lutetia, and (4179) Toutatis[M]//MICHEL P, DEMEO F E. BOTTKE W F. Asteroids IV. Tucson: University of Arizona Press, 2015: 433-450
    [25] ZHANG Y X, GUO W X, ZHENG H, et al. DCAPPSO: A novel approach for inverting asteroid rotational properties with applications to DAMIT and Tianwen-2 target asteroid[J]. Astronomy and Computing, 2025, 51: 100925 doi: 10.1016/j.ascom.2024.100925
    [26] LI X Y, SCHEERES D J. The shape and surface environment of 2016 HO3[J]. Icarus, 2021, 357: 114249 doi: 10.1016/j.icarus.2020.114249
    [27] VOKROUHLICKÝ D. Diurnal Yarkovsky effect as a source of mobility of meter-sized asteroidal fragments. I. Linear theory[J]. Astronomy and Astrophysics, 1998, 335: 1093-1100
    [28] LIU L, CHEN Q, YAN J G, et al. Surface thermal inertia of near-earth asteroid (469219) kamo`oalewa: Statistical estimation and implications[J]. Solar System Research, 2024, 58(4): 469-479 doi: 10.1134/S0038094624700321
    [29] FENUCCI M, NOVAKOVIĆ B, ZHANG P F, et al. Astrometry, orbit determination, and thermal inertia of the Tianwen-2 target asteroid (469219) Kamo ‘oalewa[J]. Astronomy :Times New Roman;">& Astrophysics, 2025, 695: A196
    [30] JI J H, TAN D J, BAO C H, et al. PyMsOfa: A python package for the Standards of Fundamental Astronomy (SOFA) service[J]. Research in Astronomy and Astrophysics, 2023, 23(12): 125015 doi: 10.1088/1674-4527/ad0499
    [31] MŰLLER M. Surface Properties of Asteroids from Mid-Infrared Observations and Thermophysical Modeling[D]. Berlin: Free University of Berlin, 2007
    [32] SHIMAKI Y, SENSHU H, SAKATANI N, et al. Thermophysical properties of the surface of asteroid 162173 Ryugu: Infrared observations and thermal inertia mapping[J]. Icarus, 2020, 348: 113835 doi: 10.1016/j.icarus.2020.113835
    [33] DELLAGIUSTINA D N, EMERY J P, GOLISH D R, et al. Properties of rubble-pile asteroid (101955) Bennu from OSIRIS-REx imaging and thermal analysis[J]. Nature Astronomy, 2019, 3(4): 341-351 doi: 10.1038/s41550-019-0731-1
    [34] DELBO M, MUELLER M, EMERY J P, et al. Asteroid Thermophysical Modeling[M]//MICHEL P, DEMEO F E. BOTTKE W F. Asteroids IV. Tucson: University of Arizona Press, 2015, 1: 107-128
    [35] HANUŠ J, DELBO M, ĎURECH J, et al. Thermophysical modeling of main-belt asteroids from WISE thermal data[J]. Icarus, 2018, 309: 297-337 doi: 10.1016/j.icarus.2018.03.016
    [36] ROZITIS B, GREEN S F, MACLENNAN E, et al. Observing the variation of asteroid thermal inertia with heliocentric distance[J]. Monthly Notices of the Royal Astronomical Society, 2018, 477(2): 1782-1802 doi: 10.1093/mnras/sty640
    [37] HUNG D, HANUŠ J, MASIERO J R, et al. Thermal properties of 1847 WISE-observed asteroids[J]. The Planetary Science Journal, 2022, 3(3): 56 doi: 10.3847/PSJ/ac4d1f
    [38] FENUCCI M, NOVAKOVIĆ B, VOKROUHLICKÝ D, et al. Low thermal conductivity of the superfast rotator (499998) 2011 PT[J]. Astronomy :Times New Roman;">& Astrophysics, 2021, 647: A61
    [39] FENUCCI M, NOVAKOVIĆ B, MARČETA D. The low surface thermal inertia of the rapidly rotating near-Earth asteroid 2016 GE1[J]. Astronomy :Times New Roman;">& Astrophysics, 2023, 675: A134
    [40] 余亮亮, 季江徽, 王素. 近地小行星(162173)1999JU3的热惯量和表面特征研究[J]. 天文学报, 2013, 54(6): 537-549 doi: 10.3969/j.issn.0001-5245.2013.06.004

    YU Liangliang, JI Jianghui, WANG Su. Investigation of thermal inertia and surface properties for near-Earth Asteroid (162173) 1999 JU3[J]. ActaAstronomica Sinica, 2013, 54(6): 537-549 doi: 10.3969/j.issn.0001-5245.2013.06.004
    [41] JIANG H X, JI J H. Thermophysical modeling of 20 Themis Family Asteroids with WISE/NEOWISE Observations[J]. The Astronomical Journal, 2021, 162(2): 40 doi: 10.3847/1538-3881/ac01c8
    [42] JIANG H X, JI J H, YU L L. Determination of size, albedo, and thermal inertia of 10 Vesta Family Asteroids with WISE/NEOWISE observations[J]. The Astronomical Journal, 2020, 159(6): 264 doi: 10.3847/1538-3881/ab8af5
    [43] JIANG H X, JI J H, YU L L, et al. Mid-IR observations of IRAS, AKARI, WISE/NEOWISE, and subaru for large icy asteroid (704) Interamnia: a new perspective of regolith properties and water ice fraction[J]. The Astrophysical Journal, 2023, 944(2): 202 doi: 10.3847/1538-4357/acaeaa
    [44] JIANG H X, YU L L, JI J H. Revisiting the advanced thermal physical model: New perspectives on thermophysical characteristics of (341843) 2008 EV5 from Four-band WISE Data with the Sunlight-reflection model[J]. The Astronomical Journal, 2019, 158(5): 205 doi: 10.3847/1538-3881/ab46b4
    [45] YU L L, YANG B, JI J H, et al. Thermophysical characteristics of the large main-belt asteroid (349) Dembowska[J]. Monthly Notices of the Royal Astronomical Society, 2017, 472(2): 2388-2397 doi: 10.1093/mnras/stx2089
    [46] YU L L, JI J H, IP W H. Surface thermophysical properties on the potentially hazardous asteroid (99942) Apophis[J]. Research in Astronomy and Astrophysics, 2017, 17(7): 070 doi: 10.1088/1674-4527/17/7/70
    [47] YU L L, JI J H. Surface thermophysical properties determination of OSIRIS-REx target asteroid (101955) Bennu[J]. Monthly Notices of the Royal Astronomical Society, 2015, 452(1): 368-375 doi: 10.1093/mnras/stv1270
    [48] NOVAKOVIĆ B, FENUCCI M, MARČETA D, et al. ASTERIA—Asteroid thermal inertia analyzer[J]. The Planetary Science Journal, 2024, 5(1): 11 doi: 10.3847/PSJ/ad08c0
    [49] REN J L, WU B, HESSE M A, et al. Surface dynamics of small fast-rotating asteroids: analysis of possible regolith on asteroid 2016 HO3[J]. Astronomy :Times New Roman;">& Astrophysics, 2024, 692: A62
    [50] 李春来, 刘建军, 任鑫, 等. “天问二号”任务科学目标和有效载荷配置[J]. 深空探测学报(中英文), 2024, 11(3): 304-310 doi: 10.15982/j.issn.2096-9287.2024.20230185

    LI Chunlai, LIU Jianjun, REN Xin, et al. Scientific objectives and payloads configuration of the Tianwen-2 Mission[J]. Journal of Deep Space Exploration, 2024, 11(3): 304-310 doi: 10.15982/j.issn.2096-9287.2024.20230185
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  194
  • HTML全文浏览量:  55
  • PDF下载量:  32
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2025-04-17
  • 修回日期:  2025-05-12
  • 网络出版日期:  2025-05-27

目录

    /

    返回文章
    返回