留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

西北走廊地区电离层吸收特性研究

辛浩 赵海生 王俊江 葛淑灿

辛浩, 赵海生, 王俊江, 葛淑灿. 西北走廊地区电离层吸收特性研究[J]. 空间科学学报. doi: 10.11728/cjss2025.04.2024-0075
引用本文: 辛浩, 赵海生, 王俊江, 葛淑灿. 西北走廊地区电离层吸收特性研究[J]. 空间科学学报. doi: 10.11728/cjss2025.04.2024-0075
XIN Hao, ZHAO Haisheng, WANG Junjiang, GE Shucan. Study on Ionospheric Absorption Variation Characteristics in the Northwest Corrido (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-9 doi: 10.11728/cjss2025.04.2024-0075
Citation: XIN Hao, ZHAO Haisheng, WANG Junjiang, GE Shucan. Study on Ionospheric Absorption Variation Characteristics in the Northwest Corrido (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-9 doi: 10.11728/cjss2025.04.2024-0075

西北走廊地区电离层吸收特性研究

doi: 10.11728/cjss2025.04.2024-0075 cstr: 32142.14.cjss.2024-0075
详细信息
    作者简介:
    • 辛浩 男, 1981年1月出生于河南省平顶山市, 现为平顶山工业职业技术学院讲师, 主要研究方向为无线电通信、网络安全技术、电离层电波传播等. E-mail: aurorx@qq.com
    • 赵海生 男, 1981年6月出生于河南省平顶山市, 现为海南大学电子科学与技术学院研究员, 海南省领军人才, 博士生导师, 主要研究方向为电离层环境探测、电离层电波传播等. 通信作者, E-mail: zhaohaisheng213@163.com
  • 中图分类号: P352

Study on Ionospheric Absorption Variation Characteristics in the Northwest Corrido

  • 摘要: 电离层fmin是频高图上观测到的回波最低频率, 是电离层垂直探测仪性能的一个重要指标, 也是电离层D区吸收效应研究的重要指标. 本文利用中国电离层垂测站网位于西北走廊地区的西安、乌鲁木齐、兰州三个台站电离层fmin数据, 研究了西北走廊地区电离层吸收的强度特性、空间分布特性、日变化、季节变化及长期变化特性. 开展电离层吸收变化特性研究, 对研究短波通信最低频率选择、天波超视距雷达探测性能评估、甚低频(VLF)远程通信效能预测具有重要应用价值. 同时电离层吸收与D层电子密度关系紧密, 是D层电子密度强弱的重要指标, 开展电离层吸收特性研究, 对于研究D区电离层变化特性, 建立D区电子密度分布模型具有重要科学意义.

     

  • 图  1  西北走廊地区电离层垂测站点分布

    Figure  1.  Ionosonde stations in the Northwest Corridor

    图  2  西北走廊地区fmin月均值分布

    Figure  2.  Distribution of fmin average values in Northwest Corridor

    图  3  西北走廊地区电离层fmin全年平均值分布

    Figure  3.  Distribution of fmin annual average in Northwest Corridor

    图  4  西北走廊地区电离层fmin均值日变化曲线

    Figure  4.  Daily variation curve of ionospheric fmin in the northwest Corrido

    图  5  西北走廊地区电离层fmin均值的昼夜变化

    Figure  5.  Diurnal variation of ionospheric fmin in the Northwest Corridor

    图  6  西北走廊地区电离层fmin均值的季节变化

    Figure  6.  Seasonal variation of ionospheric fmin in the Northwest Corridor

    图  7  西北走廊地区电离层fmin均值夏冬对比

    Figure  7.  Comparison of ionospheric fmin values in summer and winter in the Northwest Corridor

    图  8  西北走廊地区电离层fmin太阳周期变化特性

    Figure  8.  Variation characteristics of ionospheric fmin solar cycle in the Northwest Corridor

    图  9  西北走廊地区电离层fmin长期变化特性

    Figure  9.  Long-term variation characteristics of ionospheric fmin in the Northwest Corridor

    表  1  电离层fmin观测站与数据年限

    Table  1.   Ionospheric observation stations and data duration of fmin

    序号 站名 经度/(°N) 纬度/(°E) 数据年限
    1 西安 34.23 108.92 2013-2022年
    2 乌鲁木齐 43.75 87.63 2013-2022年
    3 兰州 36.06 103.87 2013-2021年
    下载: 导出CSV
  • [1] BELROSE J S. Radio wave probing of the ionosphere by the partial reflection of radio waves (from heights below 100km)[J]. Journal of Atmospheric and Terrestrial Physics, 1970, 32(4): 567-596 doi: 10.1016/0021-9169(70)90209-6
    [2] BELROSE J S, BURKE M J. Study of the lower ionosphere using partial reflection: 1. Experimental technique and method of analysis[J]. Journal of Geophysical Research, 1964, 69(13): 2799-2818 doi: 10.1029/JZ069i013p02799
    [3] BELROSE J S, BURKE M J, COYNE T N R, et al. D-region measurements with the differential-absorption, differential-phase partial-reflection experiments[J]. Journal of Geophysical Research, 1972, 77(25): 4829-4838
    [4] CHAKRABARTY D K, CHAKRABARTY P, WITT G. A theoretical attempt to explain some observed features of the D region[J]. Journal of Geophysical Research: Space Physics, 1978, 83(A12): 5763-5767 doi: 10.1029/JA083iA12p05763
    [5] ISHISAKA K, OKADA T, HAWKINS J, et al. Investigation of electron density profile in the lower ionosphere by SRP-4 rocket experiment[J]. Earth, Planets and Space, 2005, 57(9): 879-884 doi: 10.1186/BF03351865
    [6] MEIRA L G JR. Rocket measurements of upper atmospheric nitric oxide and their consequences to the lower ionosphere[J]. Journal of Geophysical Research, 1971, 76(1): 202-212 doi: 10.1029/JA076i001p00202
    [7] THOMSON N R, CLILVERD M A, RODGER C J. Ionospheric D region: VLF-measured electron densities compared with rocket-based FIRI-2018 model[J]. Journal of Geophysical Research: Space Physics, 2022, 127(11): e2022JA030977. doi: 10.1029/2022JA030977
    [8] MATHEWS J D. Incoherent scatter radar probing of the 60-100-km atmosphere and ionosphere[J]. IEEE Transactions on Geoscience and Remote Sensing, 1986, GE-24(5): 765-776
    [9] MENDILLO M, EVANS J V. Incoherent scatter observations of the ionospheric response to a large solar flare[J]. Radio Science, 1974, 9(2): 197-203 doi: 10.1029/RS009i002p00197
    [10] ŽIGMAN V, GRUBOR D, ŠULIĆ D. D-region electron density evaluated from VLF amplitude time delay during X-ray solar flares[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2007, 69(7): 775-792 doi: 10.1016/j.jastp.2007.01.012
    [11] MCRAE W M, THOMSON N R. Solar flare induced ionospheric D-region enhancements from VLF phase and amplitude observations[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2004, 66(1): 77-87 doi: 10.1016/j.jastp.2003.09.009
    [12] THOMSON N R, CLILVERD M A. Solar flare induced ionospheric D-region enhancements from VLF amplitude observations[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2001, 63(16): 1729-1737 doi: 10.1016/S1364-6826(01)00048-7
    [13] PALIT S, BASAK T, MONDAL S K, et al. Modeling of very low frequency (VLF) radio wave signal profile due to solar flares using the GEANT4 Monte Carlo simulation coupled with ionospheric chemistry[J]. Atmospheric Chemistry and Physics, 2013, 13(18): 9159-9168 doi: 10.5194/acp-13-9159-2013
    [14] SINGH A K, SINGH A K, SINGH R, et al. Solar flare induced D-region ionospheric perturbations evaluated from VLF measurements[J]. Astrophysics and Space Science, 2014, 350(1): 1-9. doi: 10.1007/s10509-013-1699-4
    [15] TAN L M, THU N N, HA T Q, et al. Study of solar flare induced D-region ionosphere changes using VLF amplitude observations at a low-latitude site[J]. Indian Journal of Radio and Space Physics, 2014, 43(3): 197-204
    [16] XIONG S P, LI J Y, WEI G C, et al. The northern and southern hemispheric asymmetries of mesospheric ozone at high latitudes during the January 2012 solar proton events[J]. Space Weather, 2023, 21(5): e2023SW003435. doi: 10.1029/2023SW003435
    [17] THOMSON N R. Daytime tropical D region parameters from short path VLF phase and amplitude[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A9): A09313. doi: 10.1029/2010JA015355
    [18] THOMSON N R, RODGER C J, CLILVERD M A. Daytime D region parameters from long-path VLF phase and amplitude[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A11): A11305. doi: 10.1029/2011JA016910
    [19] HOLDSWORTH D A, VUTHALURU R, REID I M, et al. Differential absorption measurements of mesospheric and lower thermospheric electron densities using the Buckland Park MF radar[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2002, 64(18): 2029-2042 doi: 10.1016/S1364-6826(02)00232-8
    [20] LI N, CHEN J S, DING Z H, et al. Mean winds observed by the Kunming MF radar in 2008-2010[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 122: 58-65 doi: 10.1016/j.jastp.2014.10.011
    [21] TANG Z M, LI N, WANG J Y, et al. Variation of electron density in the D-region using Kunming MF radar under low solar activity[J]. Atmosphere, 2023, 14(12): 1764. doi: 10.3390/atmos14121764
    [22] LI N, LEI J, LUAN X, et al. Responses of the D region ionosphere to solar flares revealed by MF radar measurements[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 182: 211-216 doi: 10.1016/j.jastp.2018.11.014
    [23] 张东和, 萧佐, 吴健, 等. 利用MF雷达对耀斑期间电离层D区电子密度的观测研究[J]. 空间科学学报, 2003, 23(5): 334-342 doi: 10.3969/j.issn.0254-6124.2003.05.003

    ZHANG Donghe, XIAO Zuo, WU Jian, et al. The study of the electron density in ionospheric d region using mf radar during flares period[J]. Chinese Journal of Space Science, 2003, 23(5): 334-342 doi: 10.3969/j.issn.0254-6124.2003.05.003
    [24] ZHU M Y, XU T, SUN S J, et al. Physical model of D-region ionosphere and preliminary comparison with IRI and data of MF radar at Kunming[J]. Atmosphere, 2023, 14(2): 235. doi: 10.3390/atmos14020235
    [25] FEJER J A, VICE R W. An investigation of the ionospheric D-region[J]. Journal of Atmospheric and Terrestrial Physics, 1959, 16(3/4): 291-306
    [26] ANANTHAKRISHNAN S, ABDU M A, PIAZZA L R. D-region recombination coefficients and the short wavelength X-ray flux during a solar flare[J]. Planetary and Space Science, 1973, 21(3): 367-375 doi: 10.1016/0032-0633(73)90035-4
    [27] BARRINGTON R E, THRANE E. The determination of D-region electron densities from observations of cross modulations[J]. Journal of Atmospheric and Terrestrial Physics, 1962, 24(1): 31-42 doi: 10.1016/0021-9169(62)90292-1
    [28] RAULIN J P, TROTTET G, KRETZSCHMAR M, et al. Response of the low ionosphere to X-ray and Lyman-α solar flare emissions[J]. Journal of Geophysical Research: Space Physics, 2013, 118(1): 570-575. doi: 10.1029/2012JA017916
    [29] VAMPOLA A L, GORNEY D J. Electron energy deposition in the middle atmosphere[J]. Journal of Geophysical Research: Space Physics, 1983, 88(A8): 6267-6274 doi: 10.1029/JA088iA08p06267
    [30] NAGANO I, OKADA T. Electron density profiles in the ionospheric D-region estimated from MF radio wave absorption[J]. Advances in Space Research, 2000, 25(1): 33-42 doi: 10.1016/S0273-1177(99)00894-7
    [31] FERGUSON J A. Computer Programs for Assessment of Long-Wavelength Radio Communications, Version 2.0: User’s Guide and Source Files[R]. San Diego: Space and Naval Warfare Systems Center, 1998
    [32] KUMAR A, KUMAR S. Solar flare effects on D‑region ionosphere using VLF measurements during low- and high-solar activity phases of solar cycle 24[J]. Earth, Planets and Space, 2018, 70(1): 29. doi: 10.1186/s40623-018-0794-8
    [33] MAURYA A K, SINGH R, KUMAR S, et al. Waves-like signatures in the D-region ionosphere generated by solar flares[C]//Proceedings of 2014 XXXIth URSI General Assembly and Scientific Symposium. Beijing: IEEE, 2014. DOI: 10.1109/URSIGASS.2014.6929796
    [34] GRUBOR D, ŠULIĆ D, ŽIGMAN V. Influence of solar X-ray flares on the earth-ionosphere waveguide[J]. Serbian Astronomical Journal, 2005(171): 29-35 doi: 10.2298/SAJ0571029G
    [35] OSEPIAN A, KIRKWOOD S, DALIN P, et al. D-region electron density and effective recombination coefficients during twilight - experimental data and modelling during solar proton events[J]. Annales Geophysicae, 2009, 27(10): 3713-3724 doi: 10.5194/angeo-27-3713-2009
    [36] SELVAKUMARAN R, MAURYA A K, GOKANI S A, et al. Solar flares induced D-region ionospheric and geomagnetic perturbations[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2015, 123: 102-112 doi: 10.1016/j.jastp.2014.12.009
    [37] KUMAR A, KUMAR S. Space weather effects on the low latitude D-region ionosphere during solar minimum[J]. Earth, Planets and Space, 2014, 66(1): 76 doi: 10.1186/1880-5981-66-76
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  198
  • HTML全文浏览量:  24
  • PDF下载量:  34
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-06-09
  • 录用日期:  2025-07-08
  • 修回日期:  2024-09-15
  • 网络出版日期:  2024-09-18

目录

    /

    返回文章
    返回