留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

FY-3D 电离层光度计IPM对2024年5月11日特大磁暴的响应研究

江芳 毛田 付利平 王劲松 胡秀清 张效信 王云岗 贾楠 王天放

江芳, 毛田, 付利平, 王劲松, 胡秀清, 张效信, 王云岗, 贾楠, 王天放. FY-3D 电离层光度计IPM对2024年5月11日特大磁暴的响应研究[J]. 空间科学学报. doi: 10.11728/cjss2025.04.2024-0079
引用本文: 江芳, 毛田, 付利平, 王劲松, 胡秀清, 张效信, 王云岗, 贾楠, 王天放. FY-3D 电离层光度计IPM对2024年5月11日特大磁暴的响应研究[J]. 空间科学学报. doi: 10.11728/cjss2025.04.2024-0079
JIANG Fang, MAO Tian, FU Liping, WANG Jinsong, HU Xuqing, ZHANG Xiaoxin, WANG Yungang, JIA Nan, WANG Tianfang. Study of FY-3D Ionospheric Photometer (IPM) Response to the Extreme Magnetic Storm on 11 May 2024 (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-10 doi: 10.11728/cjss2025.04.2024-0079
Citation: JIANG Fang, MAO Tian, FU Liping, WANG Jinsong, HU Xuqing, ZHANG Xiaoxin, WANG Yungang, JIA Nan, WANG Tianfang. Study of FY-3D Ionospheric Photometer (IPM) Response to the Extreme Magnetic Storm on 11 May 2024 (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-10 doi: 10.11728/cjss2025.04.2024-0079

FY-3D 电离层光度计IPM对2024年5月11日特大磁暴的响应研究

doi: 10.11728/cjss2025.04.2024-0079 cstr: 32142.14.cjss.2024-0079
基金项目: 国家重点研发计划项目(2022YFF0503901), 国家自然科学基金项目(41874187, 42174226), 低轨空间等离子体环境模拟装置关键部件中意合作研究项目(Z221100002722006)共同资助
详细信息
    作者简介:
    • 江芳 女, 1977年1月生于江苏省淮安市, 现为中国科学院国家空间科学中心副研究员, 主要研究方向为中高层大气光学遥感研究. E-mail: jiangf@nssc.ac.cn
    通讯作者:
    • 付利平 女, 1972年3月生于湖北省武汉市, 现为中国科学院国家空间科学中心研究员, 博士生导师, 主要从事中高层大气光学遥感探测研究. E-mail: fuliping@nssc.ac.cn
  • 中图分类号: P351

Study of FY-3D Ionospheric Photometer (IPM) Response to the Extreme Magnetic Storm on 11 May 2024

  • 摘要: 远紫外气辉探测仪小型电离层光度计IPM随FY-3D卫星于2017年11月15日发射升空, 通过对地测量夜间O+和电子辐射复合产生的135.6 nm辉光辐射、白天光电子碰撞激发产生的OI 135.6 nm 和N2 LBH辉光辐射, 可以反演得到夜间峰值电子密度NmF2、白天大气氧原子与氮气分子的柱密度比O/N2等重要参数. 本文对2024年5月11日特大磁暴事件中IPM的数据响应进行分析, 对白天数据的研究结果表明, 本次磁暴事件过程中, O/N2在各个纬度较磁平静日均是减小的, 可用于解释IGS(International GNESS Service) TEC在各纬度大多呈现的负暴效应. 对夜间数据研究发现,磁暴日夜间135.6 nm辐射强度相对磁平静日呈现各纬度的增大, 增大幅度可达3个数量级, 且从磁暴主相开始一直持续到恢复相, 而对应的TEC数据并没有如此大的增强; 另外, 测量190 nm以上波长辐射贡献的夜间杂散光通道在磁暴日也相应地增强, 而这一波段的辐射机制与电离层并无直接关联.

     

  • 图  1  滤光片轮的6个通道

    Figure  1.  Six functional areas on the filter wheel

    图  2  IPM在135.6 nm和N2 LBH通道的响应曲线

    Figure  2.  Response curves for 135.6 nm channel and N2 LBH channel

    图  3  N2柱密度水平为1017 cm–2、太阳天顶角为0°时模拟IPM 135.6 nm和N2 LBH辐射强度的比值与O/N2的相关性曲线

    Figure  3.  IPM 135.6 nm/N2 LBH intensity ratios versus the O/N2 column density ratios reference at a N2 column density level of 1017 cm–2 for the zero degree Solar Zenith Angle

    图  4  IPM反演的O/N2在2024年5月11日前后的全球分布

    Figure  4.  O/N2 by IPM global distribution around 11 May 2024

    图  5  IGS TEC在2024年5月11日前后的全球分布

    Figure  5.  IGS TEC global distribution around 11 May 2024

    图  6  2024年5月11日各纬度区间的O/N2(蓝线)及TEC(红线)均值相对磁平静日对应纬度均值的变化

    Figure  6.  Mean value of O/N2 (The blue line) and the mean total electron content (TEC) for various latitude intervals (the red line) around 11 May 2024. The changes are relative to the mean values of corresponding latitudes during geomagnetically quiet days

    图  7  2024年5月8~12日IPM测量的夜间135.6 nm通道辐射强度、夜间杂散光通道计数值、IGS TEC及Dst指数随时间的分布

    Figure  7.  Distribution of nighttime 135.6 nm channel radiation intensity, nighttime stray light channel count values, IGS TEC and Dst index measured by IPM from 8 to 12 May 2024

    图  8  2024年5月11日前后各纬度区间的135.6 nm辐射强度及TEC均值平方相对磁平静日对应纬度均值的变化

    Figure  8.  Changes in the square of the mean values of 135.6 nm radiation intensity and TEC for various latitude intervals around 11 May 2024 relative to the mean values of corresponding latitudes during geomagnetically quiet days

    图  9  2023年4月20~24日IPM测量的夜间135.6 nm通道辐射强度、IGS TEC及Dst指数随时间的分布

    Figure  9.  Distribution of nighttime 135.6 nm channel radiation intensity, IGS TEC and Dst index measured by IPM from 20 to 24 April 2023

    表  1  滤光片轮各通道信息

    Table  1.   Filter wheel and channel information

    通道号滤光片测量波段工作模式
    1挡板暗计数白天/夜间
    2带通滤光片(中心波长: 135.6 nm)135.6 nm白天
    3带通滤光片(中心波长: 160 nm)LBH白天
    4滤光片(190 nm以上波长)带外光白天
    5135.6 nm夜间
    6石英带外光夜间
    下载: 导出CSV
  • [1] AKASOFU S I. Prediction of development of geomagnetic storms using the solar wind-magnetosphere energy coupling function ϵ[J]. Planetary and Space Science, 1981, 29(11): 1151-1158 doi: 10.1016/0032-0633(81)90121-5
    [2] CANDER L R, HARALAMBOUS H. On the importance of total electron content enhancements during the extreme solar minimum[J]. Advances in Space Research, 2011, 47(2): 304-311 doi: 10.1016/j.asr.2010.08.026
    [3] BURNS A G, KILLEEN T L, CARIGNAN G R, et al. Large enhancements in the O/N2 ratio in the evening sector of the winter hemisphere during geomagnetic storms[J]. Journal of Geophysical Research: Space Physics, 1995, 100(A8): 14661-14671. doi: 10.1029/94JA03235
    [4] KONSTANTIN R, MAKSIM K, VLADIMIR K, et al. After-effects of geomagnetic storms: statistical analysis and theoretical explanation[J]. Solar-Terrestrial Physics, 2018, 4(4): 26-32. doi: 10.12737/stp-44201804
    [5] STRICKLAND D J, DANIELL R E, CRAVEN J D. Negative ionospheric storm coincident with DE 1-observed thermospheric disturbance on October 14, 1981[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A10): 21049-21062 doi: 10.1029/2000JA000209
    [6] HUANG C M, CHEN M Q, LIU J Y. Ionospheric positive storm phases at the magnetic equator close to sunset[J]. Journal of Geophysical Research: Space Physics, 2010, 115(A7): A07315. doi: 10.1029/2009JA014936
    [7] KUAI J W, LI Q L, ZHONG J H, et al. The ionosphere at middle and low latitudes under geomagnetic quiet time of December 2019[J]. Journal of Geophysical Research: Space Physics, 2021, 126(6): e2020JA028964. doi: 10.1029/2020JA028964
    [8] WAN Q T, MA G Y, MARUYAMA T, et al. Characteristics of ionospheric storm on October 13, 2016 at the Greenwich meridian[J]. Journal of Geophysical Research: Space Physics, 2021, 126(11): e2020JA028823. doi: 10.1029/2020JA028823
    [9] Zhang Y L, Paxton Larry, Schaefer Robert. Ionospheric and Thermospheric Contributions in TIMED/GUVI O 135.6 nm Radiances[J]. Journal of Geophysical Research: Space Physics, 2021, 126(9): 1-13
    [10] DYMOND K F, THONNARD S E, MCCOY R P, et al. An optical remote sensing technique for determining nighttime F region electron density[J]. Radio Science, 1997, 32(5): 1985-1996 doi: 10.1029/97RS01887
    [11] STRICKLAND D J, COX R J, MEIER R R, et al. Global O/N2 derived from DE 1 FUV dayglow data: technique and examples from two storm periods[J]. Journal of Geophysical Research: Space Physics, 1999, 104(A3): 4251-4266 doi: 10.1029/98JA02817
    [12] KIL H, LEE W K, SHIM J, et al. The effect of the 135.6 nm emission originated from the ionosphere on the TIMED/GUVI O/N2 ratio[J]. Journal of Geophysical Research: Space Physics, 2013, 118(2): 859-865. doi: 10.1029/2012JA018112
    [13] JIANG F, MAO T, ZHANG X X, et al. Observation of thermosphere and ionosphere using the ionosphere PhotoMeter (IPM) on the Chinese meteorological satellite FY-3D[J]. Advances in Space Research, 2020, 66(9): 2151-2167 doi: 10.1016/j.asr.2020.07.027
    [14] JIANG F, MAO T, ZHANG X X, et al. The day-glow data application of FY-3D IPM in monitoring O/N2[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2020, 205: 105309 doi: 10.1016/j.jastp.2020.105309
    [15] YOUNAS W, KHAN M, AMORY-MAZAUDIER C, et al. Middle and low latitudes hemispheric asymmetries in ∑O/N2 and TEC during intense magnetic storms of solar cycle 24[J]. Advances in Space Research, 2022, 69(1): 220-235 doi: 10.1016/j.asr.2021.10.027
    [16] STRICKLAND D J, EVANS J S, PAXTON L J. Satellite remote sensing of thermospheric O/N2 and solar EUV: 1. Theory[J]. Journal of Geophysical Research: Space Physics, 1995, 100(A7): 12217-12226 doi: 10.1029/95JA00574
    [17] 王大鑫, 付利平, 江芳, 等. 利用FY-3(D)卫星电离层光度计数据反演电离层O/N2[J]. 光谱学与光谱分析, 2021, 41(4): 1004-1010

    WANG Daxin, FU Liping, WANG Fang, et al. Inversion of ionospheric O/N2 by using FY-3D ionospheric photometer data[J]. Spectroscopy and Spectral Analysis, 2021, 41(4): 1004-1010
    [18] ZHANG Y, PAXTON L J, KOZYRA J U, et al. Nightside thermospheric FUV emissions due to energetic neutral atom precipitation during magnetic superstorms[J]. Journal of Geophysical Research: Space Physics, 2006, 111(A9): A09307. doi: 10.1029/2005JA011152
    [19] TINSLEY B A, ROHRBAUGH R P, RASSOUL H, et al. Spectral characteristics of two types of low latitude aurorae[J]. Geophysical Research Letters, 1984, 11(6): 572-575. doi: 10.1029/GL011i006p00572
    [20] MEIER R R, WELLER C S. Observations of equatorial EUV bands: evidence for low-altitude precipitation of ring current helium[J]. Journal of Geophysical Research, 1975, 80(19): 2813-2818. doi: 10.1029/JA080i019p02813
    [21] MENDILLO M. Storms in the ionosphere: patterns and processes for total electron content[J]. Reviews of Geophysics, 2006, 44(4): RG4001. doi: 10.1029/2005RG000193
    [22] PARESCE F. EUV observations of the equatorial aurora[J]. Journal of Geophysical Research: Space Physics, 1979, 84(A8): 4409-4412. doi: 10.1029/JA084iA08p04409
    [23] STEPHAN A W, CHAKRABARTI S, COTTON D M. Evidence of ENA precipitation in the EUV dayglow[J]. Geophysical Research Letters, 2000, 27(18): 2865-2868. doi: 10.1029/2000GL000040
    [24] STEPHAN A W, CHAKRABARTI S, DYMOND K F, et al. Far ultraviolet equatorial aurora during geomagnetic storms as observed by the low-resolution airglow and aurora spectrograph[J]. Journal of Geophysical Research: Space Physics, 2001, 106(A12): 30323-30330. doi: 10.1029/2001JA001103
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  280
  • HTML全文浏览量:  33
  • PDF下载量:  49
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-06-18
  • 修回日期:  2024-10-30
  • 网络出版日期:  2024-11-02

目录

    /

    返回文章
    返回