Study on Thermal Wave Transfer Characteristics in Ultra-low Thermal Conductivity Materials
-
摘要: 考虑具有时频变化的空间外热流和具有单一超低热导率隔热材料, 采用广义热弹性理论和一维热波理论对外热流噪声在单级隔热材料中的传递过程建立数理模型. 结合一维热波理论的CV模型构建了温度的阻尼振荡模型, 对外热流在单层材料中的准稳态传递过程进行数理建模, 构建温度噪声对外热流噪声响应的函数关系, 获得热流传递路径上材料各处的温度响应特性; 通过敏感度分析, 厘清影响温度噪声衰减的关键参数及其影响规律.Abstract: Considering a single ultra-low thermal conductivity insulation material, the transfer process of external heat flow noise in a single stage insulation material is modeled by using generalized thermoelasticity theory and one-dimensional thermomass theory. Combined with the CV model of one-dimensional Fourier heat conduction theory, the damping oscillation model of temperature was proposed, and the quasi-steady transfer process of external heat flow in single-layer materials was modeled. The functional relationship of temperature noise response to external heat flow noise was constructed, and the corresponding characteristics of node temperature were obtained. Through sensitivity analysis, the key parameters and their influencing rules of temperature noise attenuation were clarified.
-
表 1 热弹性介质模型参数
Table 1. Parameters of the thermoelastic model
热弹性介质模型参数 数值 导热系数k / (W·m–1·K–1) 0.28, 2.8, 28 比热容c / (kJ·kg–1) 114, 154, 204 热膨胀系数$ {\alpha }_{\mathrm{T}}\left(\times {10}^{-6}\right) $/ K–1 2.5, 2.8, 3.0 参考温度T / K 25, 50, 100, 200, 300 表 2 实际隔热材料的材料物性参数
Table 2. Material property parameters of practical thermal insulation material
泡沫塑料的材料物性参数 数值 导热系数k0 /(W·m–1·K–1) 0.2 比热容c0 /(kJ·kg–1) 1340 密度$ \rho $0/ (kg·m–3) 250 热扩散系数$ \alpha $ /(m2·s–1) 0.012216944 参考温度T /K 295 -
[1] 夏冰, 陈厚源, 汪一萍, 等. 空间引力波探测卫星外热流环境及其热控设计[J]. 中山大学学报(自然科学版), 2021, 60(1-2): 138-145XIA Bing, CHEN Houyuan, WANG Yiping, et al. External heat flux and thermal control design of space gravitational wave detection satellite[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2021, 60(1-2): 138-145 [2] ZENER C M, SIEGEL S. Elasticity and anelasticity of metals[J]. The Journal of Physical and Colloid Chemistry, 1949, 53(9): 1468 doi: 10.1021/j150474a017 [3] 张艳. 基于模型试验的层状结构物层底应变分析[D]. 西安: 长安大学, 2014ZHANG Yan. Analysis on the Bottom Strain of the Layered Structure Based on the Model Test[D]. Xi’an: Chang’an University, 2014 [4] GUEGUEN Y. Wave propagation and attenuation in rocks from poroelasticity and thermoelasticity[C]//Poromechanics V: Proceedings of the Fifth Biot Conference on Poromechanics. Virginia: American Society of Civil Engineers, 2013: 2391-2394 [5] BIOT M A. Thermoelasticity and irreversible thermodynamics[J]. Journal of Applied Physics, 1956, 27(3): 240-253 doi: 10.1063/1.1722351 [6] CARCIONE J M. Wave Fields in Real Media. Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media[M]. 2nd ed. Amsterdam: Elsevier Science, 2007 [7] QI X L, SUH C S. Generalized thermo-elastodynamics for semiconductor material subject to ultrafast laser heating. Part I: Model description and validation[J]. International Journal of Heat and Mass Transfer, 2010, 53(1-3): 41-47 doi: 10.1016/j.ijheatmasstransfer.2009.10.010 [8] 侯婉婷, 符力耘, 魏佳, 等. 热弹性介质中波传播特征[J]. 地球物理学报, 2021, 64(4): 1364-1374 doi: 10.6038/cjg2021N0458HOU Wanting, FU Liyun, WEI Jia, et al. Characteristics of wave propagation in thermoelastic medium[J]. Chinese Journal of Geophysics, 2021, 64(4): 1364-1374 doi: 10.6038/cjg2021N0458 [9] DERESIEWICZ H. Plane waves in a thermoelastic solid[J]. The Journal of the Acoustical Society of America, 1957, 29(2): 204-209 doi: 10.1121/1.1908832 [10] Rudgers A J. Analysis of thermoacoustic wave propagation in elastic media[J]. The Journal of the Acoustical Society of America, 1990, 88(2): 1078-1094 doi: 10.1121/1.399856 [11] 曹炳阳, 胡锐锋, 过增元. 基于热质理论的热波传递现象研究[J]. 工程热物理学报, 2008, 29(8): 1351-1353 doi: 10.3321/j.issn:0253-231X.2008.08.022CAO Bingyang, HU Ruifeng, GUO Zengyuan. Thermal wave phenomenon studied by thermal mass theory[J]. Journal of Engineering Thermophysics, 2008, 29(8): 1351-1353 doi: 10.3321/j.issn:0253-231X.2008.08.022 [12] 过增元. 热质的运动和传递: 热质和热子气[J]. 工程热物理学报, 2006, 27(4): 631-634 doi: 10.3321/j.issn:0253-231X.2006.04.029GUO Zengyuan. Motion and transfer of thermal mass-thermal mass and thermon gas[J]. Journal of Engineering Thermophysics, 2006, 27(4): 631-634 doi: 10.3321/j.issn:0253-231X.2006.04.029 [13] 过增元, 曹炳阳. 基于热质运动概念的普适导热定律[J]. 物理学报, 2008, 57(7): 4273-4281 doi: 10.7498/aps.57.4273GUO Zengyuan, CAO Bingyang. A general heat conduction law based on the concept of motion of thermal mass[J]. Acta Physica Sinica, 2008, 57(7): 4273-4281 doi: 10.7498/aps.57.4273 [14] DONG Y, CAO B Y, GUO Z Y. Generalized heat conduction laws based on thermomass theory and phonon hydrodynamics[J]. Journal of Applied Physics, 2011, 110(6): 063504 doi: 10.1063/1.3634113 [15] 李政阳. 一维热波晶体的热传导特性研究[D]. 北京: 北京交通大学, 2017LI Zhengyang. The Properties of Heat Conduction in the One Dimensional Thermal Wave Crystal[D]. Beijing: Beijing Jiaotong University, 2017 [16] GUO Z Y, HOU Q W. Thermal wave based on the thermomass model[J]. Journal of Heat Transfer, 2010, 132(7): 072403 doi: 10.1115/1.4000987 -
-