留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间天气探源计划(探冕计划)

田晖 白先勇 封莉 熊明 陈亚杰 侯振永 王亚敏

田晖, 白先勇, 封莉, 熊明, 陈亚杰, 侯振永, 王亚敏. 空间天气探源计划(探冕计划)[J]. 空间科学学报. doi: 10.11728/cjss2025.04.2025-0060
引用本文: 田晖, 白先勇, 封莉, 熊明, 陈亚杰, 侯振永, 王亚敏. 空间天气探源计划(探冕计划)[J]. 空间科学学报. doi: 10.11728/cjss2025.04.2025-0060
TIAN Hui, BAI Xianyong, FENG Li, XIONG Ming, CHEN Yajie, HOU Zhenyong, WANG Yamin. Coronal Explorer for Our Sun and Nearby Stars (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-19 doi: 10.11728/cjss2025.04.2025-0060
Citation: TIAN Hui, BAI Xianyong, FENG Li, XIONG Ming, CHEN Yajie, HOU Zhenyong, WANG Yamin. Coronal Explorer for Our Sun and Nearby Stars (in Chinese). Chinese Journal of Space Science, 2025, 45(4): 1-19 doi: 10.11728/cjss2025.04.2025-0060

空间天气探源计划(探冕计划)

doi: 10.11728/cjss2025.04.2025-0060 cstr: 32142.14.cjss.2025-0060
基金项目: 国家自然科学基金项目资助(12425301)
详细信息
    作者简介:
    • 田晖 1982年8月出生于湖北蕲春, 北京大学地球与空间科学学院教授, 博士生导师, 主要从事太阳物理、恒星磁活动、空间极紫外探测等方面的研究, 在日冕加热机制和磁场测量原理、星冕物质抛射的搜寻和建模等方面取得了一系列研究成果. E-mail: huitian@pku.edu.cn
  • 中图分类号: P354

Coronal Explorer for Our Sun and Nearby Stars

  • 摘要: 空间天气探源计划(探冕计划)将在同一颗卫星平台上实现对太阳和晚型恒星的同步观测, 以揭示太阳系内外空间天气的源头——日冕和星冕的物理性质及爆发规律. 卫星拟工作在约720 km高度的太阳同步轨道, 同时对日冕和星冕开展长期、连续的观测. 通过搭载日面极紫外光谱仪、极紫外光谱日冕仪、恒星极紫外光谱仪、恒星极紫外测光望远镜等载荷, 该计划将在三个方面取得重要突破: 第一, 通过首次开展全日面视场的日冕光谱观测, 刻画日冕外流和爆发的源区特性, 推动太阳系空间天气的精准预报; 第二, 通过填补当前太阳系外极紫外探测的空白, 探明星冕爆发规律, 从而开拓太阳系外空间天气的新疆域; 第三, 通过对太阳和其他恒星同步开展点源极紫外探测, 并结合模型, 建立空间天气影响行星宜居性的新认知.

     

  • 图  1  空间天气示意

    Figure  1.  Schematic diagram of space weather

    图  2  极紫外光谱观测对CME初始传播阶段视向速度的诊断[11]

    Figure  2.  EUV spectroscopic observation providing the line-of-sight velocity during a CME initial propagation phase[11]

    图  3  EUVE卫星观测的星冕极紫外光谱示例 (光谱分别来自两颗具有不同星冕温度的恒星)

    Figure  3.  EUV spectra of stellar coronae observed by EUVE (show coronal emission from two stars with different coronal temperatures, respectively)

    图  4  通过多次狭缝扫描拼接而成的全日面Fe XIII 20.2 nm辐射强度(a)和视向速度(b)分布

    Figure  4.  Full-disk Fe XIII 20.2 nm mosaic maps of the line intensity (a) and Doppler velocity (b) constructed from multiple raster scans

    图  5  Fe XII 19.5 nm谱线的辐射强度、多普勒速度、谱线展宽分布

    Figure  5.  EIS Fe XII 19.5 nm observations of intensity, velocity, and line width

    图  6  太阳积分极紫外谱线观测的CME引起的多普勒频移和暗化

    Figure  6.  Doppler shifts and coronal dimming caused by CMEs in the Sun-as-a-srar EUV spectroscopic observations

    图  7  极紫外波段观测到的太阳耀斑典型结构

    Figure  7.  Typical structures of solar flares in EUV observations

    图  8  系外空间天气对宜居性的影响

    Figure  8.  Impact of extrasolar space weather on habitability

    图  9  科学目标、探测内容与载荷的对应关系

    Figure  9.  Relationships between the scientific objectives, detection contents, and payloads

    图  10  多缝光谱仪的工作模式

    Figure  10.  Operating mode of the multi-slit spectrometer

    图  11  极紫外光谱日冕仪的狭缝位置

    Figure  11.  Slit positions for the EUV spectroscopic coronagraph

    图  12  恒星极紫外光谱仪 (a) 和恒星极紫外测光望远镜 (b) 预期观测结果示例 (数据来自SDO/EVE)

    Figure  12.  Examples of expected observations from the stellar EUV spectrometer (a) and the stellar EUV photometer (b). Data from SDO/EVE

    图  13  初步选取的候选恒星目标源在J2000坐标系下的位置信息

    Figure  13.  Positions of tentatively selected candidate stellar targets in the J2000 coordinate system

    图  14  卫星平台布局

    Figure  14.  Satellite platform configuration

    表  1  日面极紫外光谱仪主要技术指标

    Table  1.   Key technical specifications of the EUV solar-disk spectrometer

    设备 多缝光谱仪 积分光谱仪
    观测物理量 视向速度、密度、温度 视向速度、密度、温度
    观测视场 ≥ 40′× 40′ Φ40′
    空间分辨率 ≤ 8″
    狭缝视场 4″× 40′/条, 5条
    观测波段 18.4 ~ 19.7 nm 17.0 ~ 20.5 nm, 25.5 ~ 29.0 nm, 94.0 ~ 109.0 nm
    光谱分辨本领 ≥ 1000@19.5 nm ≥ 500@19.5 nm
    时间分辨率 ≤ 300 s ≤ 60 s
    下载: 导出CSV

    表  2  极紫外光谱日冕仪主要技术指标

    Table  2.   Key technical specifications of the EUV spectroscopic coronagraph

    观测物理量 速度、温度、密度
    观测波段 94~109 nm
    垂直狭缝方向视场 0~3 Rs (径向从1.3 Rs开始)
    沿狭缝方向视场 –2 ~ 2 Rs
    狭缝条数 5
    狭缝宽度 不小于25″(50 μm)
    探测器参数 像素大小25 μm × 25 μm, 面阵大小1024 × 2048
    光谱分辨本领 Approximately 2000@103 nm
    空间像元分辨率 7.5″/ pixel
    时间分辨率 6 min
    下载: 导出CSV

    表  3  恒星极紫外光谱仪主要技术指标

    Table  3.   Key technical specifications of the stellar EUV spectrometer

    观测物理量 视向速度、密度、温度
    观测视场 ≥ 5′
    空间分辨率 ≤ 40″
    观测波段 9.0~13.0 nm, 17.0~20.5 nm, 25.5~29.0 nm
    光谱分辨本领 ≥ 1000@19.5 nm
    有效面积 ≥ 20 cm2
    时间分辨率 约60 min
    下载: 导出CSV

    表  4  恒星极紫外测光望远镜主要技术指标

    Table  4.   Key technical specifications of the stellar EUV photometer

    观测参数 辐射强度
    观测视场 约5° × 5°
    空间分辨率 ≤ 40″
    工作波段 9.4 nm, 12.9 nm, 17.4 nm, 28.4 nm
    带宽 ≤ 1 nm
    有效面积 ≥ 20 cm2
    时间分辨率 约10 min
    下载: 导出CSV
  • [1] AIRAPETIAN V S, GLOCER A, KHAZANOV G V, et al. How hospitable are space weather affected habitable zones? the role of ion escape[J]. The Astrophysical Journal Letters, 2017, 836(1): L3 doi: 10.3847/2041-8213/836/1/L3
    [2] 田晖, 白先勇, 邓元勇, 等. 晚型恒星极紫外和X射线探测的科学目标与初步方案[J]. 中国科学: 物理学、力学、天文学, 2022, 52(11): 119511

    TIAN Hui, BAI Xianyong, DENG Yuanyong, et al. Scientific objectives and preliminary plans for EUV and X-ray observations of late-type stars[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2022, 52(11): 119511
    [3] LINSKY J. Host Stars and their Effects on Exoplanet Atmospheres: An Introductory Overview[M]. 2nd ed. Springer Nature Switzerland: Springer, 2025
    [4] AIRAPETIAN V S, GLOCER A, GRONOFF G E, et al. Prebiotic chemistry and atmospheric warming of early Earth by an active young Sun[J]. Nature Geoscience, 2016, 9(6): 452-455 doi: 10.1038/ngeo2719
    [5] DOMINGO V, FLECK B, POLAND A I. The SOHO mission: an overview[J]. Solar Physics, 1995, 162: 1-37 doi: 10.1007/BF00733425
    [6] KAISER M L, KUCERA T A, DAVILA J M, et al. The STEREO mission: an introduction[J]. Space Science Reviews, 2008, 136(1/2/3/4): 5-16
    [7] PESNELL W D, THOMPSON B J, CHAMBERLIN P C. The Solar Dynamics Observatory (SDO)[J]. Solar Physics, 2012, 275: 3-15 doi: 10.1007/s11207-011-9841-3
    [8] MÜLLER D, ST CYR O C, ZOUGANELIS I, et al. The solar orbiter mission-science overview[J]. Astronomy :Times New Roman;">& Astrophysics, 2020, 642(1): A1
    [9] DEFOREST C, KILLOUGH R, GIBSON S, et al. Polarimeter to UNify the corona and heliosphere (PUNCH): science, status, and path to flight[C]//2022 IEEE Aerospace Conference (AERO). Big Sky: IEEE, 2022: 1-11
    [10] GOSLING J T. The solar flare myth[J]. Journal of Geophysical Research: Space Physics, 1993, 98(A11): 18937-18949 doi: 10.1029/93JA01896
    [11] TIAN H, MCINTOSH S W, XIA L D, et al. What can we learn about solar coronal mass ejections, coronal dimmings, and extreme-ultraviolet jets through spectroscopic observations?[J]. The Astrophysical Journal, 2012, 748(2): 106 doi: 10.1088/0004-637X/748/2/106
    [12] ANDERSON M, APPOURCHAUX T, AUCHÈRE F, et al. The solar orbiter SPICE instrument. an extreme UV imaging spectrometer[J]. Astronomy :Times New Roman;">& Astrophysics, 2020, 642: A14
    [13] SHIMIZU T, IMADA S, KAWATE T, et al. The Solar-C(EUVST) mission: the latest status[J]. Proceedings of the SPIE, 2020, 11444: 114440N
    [14] DE PONTIEU B, MARTÍNEZ-SYKORA J, TESTA P, et al. The multi-slit approach to coronal spectroscopy with the multi-slit solar explorer (MUSE)[J]. The Astrophysical Journal, 2020, 888(1): 3 doi: 10.3847/1538-4357/ab5b03
    [15] WINEBARGER A R, WEBER M, BETHGE C, et al. Unfolding overlapped slitless imaging spectrometer data for extended sources[J]. The Astrophysical Journal, 2019, 882(1): 12 doi: 10.3847/1538-4357/ab21db
    [16] KOHL J L, ESSER R, GARDNER L D, et al. The Ultraviolet Coronagraph Spectrometer for the Solar and Heliospheric Observatory[J]. Solar Physics, 1995, 162(1/2): 313-356
    [17] CHEN B, ZHANG X X, HE L P, et al. Solar X-ray and EUV imager on board the FY-3E satellite[J]. Light: Science & Applications, 2022, 11(1): 329
    [18] BAI X Y, TIAN H, DENG Y Y, et al. The solar upper transition region imager (SUTRI) onboard the SATech-01 satellite[J]. Research in Astronomy and Astrophysics, 2023, 23(6): 065014 doi: 10.1088/1674-4527/accc74
    [19] LI C, FANG C, LI Z, et al. The Chinese Hα solar explorer (CHASE) mission: an overview[J]. Science China Physics, Mechanics & Astronomy, 2022, 65(8): 289602
    [20] GAN W Q, ZHU C, DENG Y Y, et al. The Advanced Space-based Solar Observatory (ASO-S)[J]. Solar Physics, 2023, 298(5): 68 doi: 10.1007/s11207-023-02166-x
    [21] FENG L, LI H, CHEN B, et al. The Lyman-alpha Solar Telescope (LST) for the ASO-S mission - III. data and potential diagnostics[J]. Research in Astronomy and Astrophysics, 2019, 19(11): 162 doi: 10.1088/1674-4527/19/11/162
    [22] 田晖, 徐昱, 陈何超, 等. 星冕物质抛射的探测与建模[J]. 中国科学: 技术科学, 2023, 53(12): 2021-2038

    TIAN Hui, XU Yu, CHEN Hechao, et al. Observations and simulations of stellar coronal mass ejections[J]. Scientia Sinica(Technologica), 2023, 53(12): 2021-2038
    [23] NAMEKATA K, MAEHARA H, HONDA S, et al. Probable detection of an eruptive filament from a superflare on a solar-type star[J]. Nature Astronomy, 2022, 6: 241-248
    [24] LU H P, TIAN H, ZHANG L Y, et al. An extreme stellar prominence eruption observed by LAMOST time-domain spectroscopy[J]. The Astrophysical Journal Letters, 2025, 978(2): L32 doi: 10.3847/2041-8213/ad93cc
    [25] VERONIG A M, ODERT P, LEITZINGER M, et al. Indications of stellar coronal mass ejections through coronal dimmings[J]. Nature Astronomy, 2021, 5: 697-706 doi: 10.1038/s41550-021-01345-9
    [26] ARGIROFFI C, REALE F, DRAKE J J, et al. A stellar flare-coronal mass ejection event revealed by X-ray plasma motions[J]. Nature Astronomy, 2019, 3: 742-748 doi: 10.1038/s41550-019-0781-4
    [27] CHEN H C, TIAN H, LI H, et al. Detection of flare-induced plasma flows in the corona of EV lac with X-Ray spectroscopy[J]. The Astrophysical Journal, 2022, 933(1): 92 doi: 10.3847/1538-4357/ac739b
    [28] FRANCE K, FLEMING B T, DRAKE J J, et al. The extreme-ultraviolet stellar characterization for atmospheric physics and evolution (ESCAPE) mission concept[J]. Proceedings of the SPIE, 2019, 11118: 1111808
    [29] BOWYER S, MALINA R F. The extreme ultraviolet explorer mission[J]. Advances in Space Research, 1991, 11(11): 205-215 doi: 10.1016/0273-1177(91)90077-W
    [30] BARSTOW M A, CASEWELL S L, HOLBERG J B, et al. The status and future of EUV astronomy[J]. Advances in Space Research, 2014, 53(6): 1003-1013 doi: 10.1016/j.asr.2013.08.007
    [31] CRAIG N, ABBOTT M, FINLEY D, et al. The extreme ultraviolet explorer stellar spectral atlas[J]. The Astrophysical Journal Supplement Series, 1997, 113(1): 131 doi: 10.1086/313052
    [32] WEISSKOPF M C, TANANBAUM H D, VAN SPEYBROECK L P, et al. Chandra X-ray Observatory (CXO): overview[J]. Proceedings of the SPIE, 2000, 4012: 2-16 doi: 10.1117/12.391545
    [33] BARSTOW M A, KOWALSKI M P, EVES S, et al. Observatory-class science with a low-cost EUV astronomy mission[J]. Proceedings of the SPIE, 2012, 8443: 844303 doi: 10.1117/12.924903
    [34] DRAKE J J, CHEIMETS P, GARRAFFO C, et al. NExtUP: the normal-incidence extreme ultraviolet photometer[J]. Proceedings of the SPIE, 2021, 11821: 1182108
    [35] WOODS T N, EPARVIER F G, HOCK R, et al. Extreme ultraviolet variability experiment (EVE) on the solar dynamics observatory (SDO): overview of science objectives, instrument design, data products, and model developments[J]. Solar Physics, 2012, 275(1/2): 115-143
    [36] CUI X Q, ZHAO Y H, CHU Y Q, et al. The large sky area multi-object fiber spectroscopic telescope (LAMOST)[J]. Research in Astronomy and Astrophysics, 2012, 12(9): 1197-1242 doi: 10.1088/1674-4527/12/9/003
    [37] LU H P, TIAN H, ZHANG L Y, et al. Possible detection of coronal mass ejections on late-type main-sequence stars in LAMOST medium-resolution spectra[J]. Astronomy :Times New Roman;">& Astrophysics, 2022, 663: A140
    [38] MENG X M, HAN X H, WEI J Y, et al. NUV star catalog from the lunar-based ultraviolet telescope survey: first release[J]. Research in Astronomy and Astrophysics, 2016, 16(11): 168 doi: 10.1088/1674-4527/16/11/168
    [39] 刘慧根, 周济林, 霍卓玺, 等. 恒星活动与系外宜居行星探索卫星——“紫瞳”科学卫星[J]. 空间科学与试验学报, 2024, 1(1): 23-32

    LIU Huigen, ZHOU Jilin, HUO Zhuoxi, et al. Ultraviolet-visible stellar activity and habitable exoplanet survey —— the UVEYES satellite[J]. Journal of Space Science and Experiment, 2024, 1(1): 23-32
    [40] HASSLER D M, DAMMASCH I E, LEMAIRE P, et al. Solar wind outflow and the chromospheric magnetic network[J]. Science, 1999, 283(5403): 810-813 doi: 10.1126/science.283.5403.810
    [41] TU C Y, ZHOU C, MARSCH E, et al. Solar wind origin in coronal funnels[J]. Science, 2005, 308(5721): 519-523 doi: 10.1126/science.1109447
    [42] TIAN H, HARRA L, BAKER D, et al. Upflows in the upper solar atmosphere[J]. Solar Physics, 2021, 296(3): 47 doi: 10.1007/s11207-021-01792-7
    [43] BROOKS D H, UGARTE-URRA I, WARREN H P. Full-Sun observations for identifying the source of the slow solar wind[J]. Nature Communications, 2015, 6(1): 5947 doi: 10.1038/ncomms6947
    [44] IMADA S, BAMBA Y, KUSANO K. Coronal behavior before the large flare onset[J]. Publications of the Astronomical Society of Japan, 2014, 66(SP1): S17 doi: 10.1093/pasj/psu092
    [45] HARRA L K, WILLIAMS D R, WALLACE A J, et al. Coronal nonthermal velocity following helicity injection before an X-class flare[J]. The Astrophysical Journal, 2009, 691(2): L99-L102 doi: 10.1088/0004-637X/691/2/L99
    [46] JEFFREY N L S, FLETCHER L, LABROSSE N, et al. The development of lower-atmosphere turbulence early in a solar flare[J]. Science Advances, 2018, 4(12): 2794 doi: 10.1126/sciadv.aav2794
    [47] YANG Z H, TIAN H, ZHU Y J, et al. Is it possible to detect coronal mass ejections on solar-type stars through extreme-ultraviolet spectral observations?[J]. The Astrophysical Journal, 2024, 966(1): 24 doi: 10.3847/1538-4357/ad2a44
    [48] XU Y, TIAN H, HOU Z Y, et al. Sun-as-a-star spectroscopic observations of the line-of-sight velocity of a solar eruption on 2021 October 28[J]. The Astrophysical Journal, 2022, 931(2): 76 doi: 10.3847/1538-4357/ac69d5
    [49] MASON J P, WOODS T N, CASPI A, et al. Mechanisms and observations of coronal dimming for the 2010 August 7 event[J]. The Astrophysical Journal, 2014, 789(1): 61 doi: 10.1088/0004-637X/789/1/61
    [50] MAEHARA H, SHIBAYAMA T, NOTSU S, et al. Superflares on solar-type stars[J]. Nature, 2012, 485(7399): 478-481 doi: 10.1038/nature11063
    [51] HARRA L K, SCHRIJVER C J, JANVIER M, et al. The characteristics of solar X-class flares and CMEs: a paradigm for stellar superflares and eruptions?[J]. Solar Physics, 2016, 291(6): 1761-1782 doi: 10.1007/s11207-016-0923-0
    [52] LIU R. Dynamical processes at the vertical current sheet behind an erupting flux rope[J]. Monthly Notices of the Royal Astronomical Society, 2013, 434(2): 1309-1320 doi: 10.1093/mnras/stt1090
    [53] POPPENHAEGER K, SCHMITT J H M M, WOLK S J. Transit observations of the hot jupiter HD 189733b at X-ray wavelengths[J]. The Astrophysical Journal, 2013, 773(1): 62 doi: 10.1088/0004-637X/773/1/62
    [54] AIRAPETIAN V S, BARNES R, COHEN O, et al. Impact of space weather on climate and habitability of terrestrial-type exoplanets[J]. International Journal of Astrobiology, 2020, 19(2): 136-194 doi: 10.1017/S1473550419000132
    [55] CHAN L, TIAN H, LIU X Y, et al. Global coronal plasma diagnostics based on multislit extreme-ultraviolet spectroscopy[J]. The Astrophysical Journal, 2024, 967(2): 162 doi: 10.3847/1538-4357/ad4114
    [56] FENG Y F, BAI X Y, GUO S F, et al. Optical optimization of a multi-slit extreme ultraviolet spectrograph for global solar corona diagnostics[J]. Experimental Astronomy, 2024, 58(3): 13 doi: 10.1007/s10686-024-09961-9
    [57] TAMBURRI C A, KAZACHENKO M D, KOWALSKI A F. The relationships among solar flare impulsiveness, energy release, and ribbon development[J]. The Astrophysical Journal, 2024, 966(1): 94 doi: 10.3847/1538-4357/ad3047
    [58] TIAN H, TU C Y, MARSCH E, et al. The nascent fast solar wind observed by the EUV imaging spectrometer on board hinode[J]. The Astrophysical Journal Letters, 2010, 709(1): L88-L93 doi: 10.1088/2041-8205/709/1/L88
    [59] CHEUNG M C M, DE PONTIEU B, MARTÍNEZ-SYKORA J, et al. Multi-component decomposition of astronomical spectra by compressed Sensing[J]. The Astrophysical Journal, 2019, 882(1): 13 doi: 10.3847/1538-4357/ab263d
    [60] LU H P, TIAN H, CHEN H C, et al. Full Velocities and Propagation Directions of Coronal Mass Ejections Inferred from Simultaneous Full-disk Imaging and Sun-as-a-star Spectroscopic Observations[J]. The Astrophysical Journal, 2023, 953(1): 68 doi: 10.3847/1538-4357/acd6a1
    [61] CHENG Z X, WANG Y M, LIU R, et al. Plasma motion inside flaring regions revealed by doppler shift information from SDO/EVE observations[J]. The Astrophysical Journal, 2019, 875(2): 93 doi: 10.3847/1538-4357/ab0f2d
    [62] YANG Z H, TIAN H, BAI X Y, et al. Can we detect coronal mass ejections through asymmetries of sun-as-a-star extreme-ultraviolet spectral line profiles?[J]. The Astrophysical Journal Supplement Series, 2022, 260(2): 36 doi: 10.3847/1538-4365/ac6607
    [63] GIORDANO S, CIARAVELLA A, RAYMOND J C, et al, UVCS/SOHO catalog of coronal mass ejections from 1996 to 2005: Spectroscopic proprieties[J]. Journal of Geophysical Research: Space Physics, 2013, 118(3): 967-981
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  21
  • PDF下载量:  13
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2025-04-16
  • 修回日期:  2025-06-06
  • 网络出版日期:  2025-06-09

目录

    /

    返回文章
    返回