留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1998-2020年120°E上空电离层赤道异常冬季纬度偏移现象及其影响机制

黄林峰 王劲松 宋善海 杨士进 廖瑶

黄林峰, 王劲松, 宋善海, 杨士进, 廖瑶. 1998-2020年120°E上空电离层赤道异常冬季纬度偏移现象及其影响机制[J]. 空间科学学报. doi: 10.11728/cjss2025.05.2024-0136
引用本文: 黄林峰, 王劲松, 宋善海, 杨士进, 廖瑶. 1998-2020年120°E上空电离层赤道异常冬季纬度偏移现象及其影响机制[J]. 空间科学学报. doi: 10.11728/cjss2025.05.2024-0136
HUANG Linfeng, WANG Jinsong, SONG Shanhai, YANG Shijin, LIAO Yao. EIA Latitude Offset Phenomenon in Winter and Its Impact Mechanism around 120-size:15pt'>°E Longitude during 1998-2020 (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1451-1459 doi: 10.11728/cjss2025.05.2024-0136
Citation: HUANG Linfeng, WANG Jinsong, SONG Shanhai, YANG Shijin, LIAO Yao. EIA Latitude Offset Phenomenon in Winter and Its Impact Mechanism around 120-size:15pt">°E Longitude during 1998-2020 (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1451-1459 doi: 10.11728/cjss2025.05.2024-0136

1998-2020年120°E上空电离层赤道异常冬季纬度偏移现象及其影响机制

doi: 10.11728/cjss2025.05.2024-0136 cstr: 32142.14.cjss.2024-0136
基金项目: 国家自然科学基金项目资助(42274217)
详细信息
    通讯作者:
    • 黄林峰 男, 1986年3月出生于江西省抚州市, 现为贵州省生态与农业气象中心高级工程师, 主要研究方向为电离层与中高层大气等. E-mail:lxq850808@126.com
  • 中图分类号: P352

EIA Latitude Offset Phenomenon in Winter and Its Impact Mechanism around 120°E Longitude during 1998-2020

  • 摘要: 基于俄罗斯科学院IZMIRAN研究所提供的1998 2020年的电离层TEC, f0F2, hmF2等数据, 统计分析在地磁活动平静期间120°E上空电离层赤道异常(EIA)半球不对称性与冬季纬度位置偏移现象, 并探讨其可能影响机制. 研究结果表明, 冬至期间EIA双峰结构不对称性与太阳活动变化的相关性相对显著, 在太阳活动低时主要为南驼峰更为明显, 在太阳活动高时以北驼峰显著为主; EIA双峰结构纬度位置在冬季期间呈现出向南半球偏移的现象, 特别是在太阳活动很低时, 且南驼峰纬度位置偏移量更明显. 在120°E冬至期间, 跨赤道中性风是影响EIA双峰强度半球不对称性的主要因素, 排除地磁活动和磁偏角等的影响, 冬季EIA双峰结构纬度偏移可能与太阳直射点等离子体浓度背景场的地理控制作用有关.

     

  • 图  1  研究区域周边IGS站点与电离层探测仪站点分布

    Figure  1.  Distribution of International GNSS Service (IGS) and ionosonde network around the research area

    图  2  1998-2020年太阳活动F10.7P指数

    Figure  2.  Values of F10.7 and P during the period from 1998 to 2020

    图  3  1998-2020年夏冬至期间双峰强度不对称性指数与太阳活动指数变化关系

    Figure  3.  Solar activity (P) dependence of asymmetry index (δAI) of TEC and NmF2 during summer and winter solstice from 1998 to 2020

    图  4  1998-2020年太阳活动低时电离层NmF2月均值随纬度和时间分布

    Figure  4.  Monthly contour plots of mean NmF2 under the low (P < 100) solar activity days from 1998 to 2020

    图  5  1998-2020年太阳活动高时和低时电离层TEC与NmF2双峰结构纬度位置逐月变化

    Figure  5.  Monthly variation of the TEC and NmF2 under the high low (P≥150) and low (P < 100) solar activity days from 1998 to 2020

    图  6  1998-2020年夏冬至期间F2层双峰结构磁赤道电子浓度峰值高度hmF2与太阳活动对应关系

    Figure  6.  Solar activity (P) dependence of F2 layer peak height (hmF2) of the magnetic equator during solstice period from 1998 to 2020

    图  7  太阳活动低时冬至期间EIA形成双峰结构

    Figure  7.  Schematic diagram of the EIA structure under the low (P<100) solar activity days during winter solstice

    表  1  太阳活动高时和低时电离层双峰结构纬度冬季相对于夏季的偏移量对比

    Table  1.   Comparison of latitude offset of EIA structure in winter relative to summer

    太阳活动 双峰结构参数 Lnc偏移量/(°) Let偏移量/(°) Lsc偏移量/(°)
    P≥150 TEC 0.3 1.9 4.3
    NmF2 0.6 3.1 3.6
    P<100 TEC 3.9 2.5 9.6
    NmF2 4.4 3.7 7.2
    下载: 导出CSV
  • [1] FORBES J M, PALO S E, ZHANG X L. Variability of the ionosphere[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2000, 62(8): 685-693 doi: 10.1016/S1364-6826(00)00029-8
    [2] FEJER B G. Low latitude ionospheric electrodynamics[J]. Space Science Reviews, 2011, 158(1): 145-166 doi: 10.1007/s11214-010-9690-7
    [3] APPLETON E V. Two anomalies in the ionosphere[J]. Nature, 1946, 157(3995): 691
    [4] MOFFETT R J, HANSON W B. Effect of ionization transport on the equatorial F-region[J]. Nature, 1965, 206(4985): 705-706 doi: 10.1038/206705a0
    [5] BALAN N, IYER K N. Equatorial anomaly in ionospheric electron content and its relation to dynamo currents[J]. Journal of Geophysical Research: Space Physics, 1983, 88(A12): 10259-10262 doi: 10.1029/JA088iA12p10259
    [6] Lin C H, Liu J Y, Fang T W, et al. Motions of the equatorial ionization anomaly crests imaged by FORMOSAT-3/COSMIC[J]. Geophysical Research Letters, 2007, 34(19): L19101
    [7] LI Bo, CUI Ruifei, WENG Libin. Seasonal variations of global ionospheric NmF2 and hmF2[J]. Chinese Journal of Space Science, 2024, 44(1): 60-70 (李波, 崔瑞飞, 翁利斌. 全球电离层峰值参数的季节变化[J]. 空间科学学报, 2024, 44(1): 60-70 doi: 10.11728/cjss2024.01.2023-0130

    LI Bo, CUI Ruifei, WENG Libin. Seasonal variations of global ionospheric NmF2 and hmF2[J]. Chinese Journal of Space Science, 2024, 44(1): 60-70 doi: 10.11728/cjss2024.01.2023-0130
    [8] LOMOTEY S O, DE SOUZA J R, WRASSE C M, et al. Variability of the equatorial ionization anomaly over the South American sector: effects of electric field and effective meridional wind[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2024, 260: 106240. doi: 10.1016/j.jastp.2024.106240
    [9] YU Tao, WAN Weixing, LIU Libo, et al. Using IGS data to analysis the global TEC annual and semiannual variation[J]. Chinese Journal of Geophysics, 2006, 49(4): 943-949 (余涛, 万卫星, 刘立波, 等. 利用IGS数据分析全球TEC的周年和半年变化特性[J]. 地球物理学报, 2006, 49(4): 943-949 doi: 10.3321/j.issn:0001-5733.2006.04.003

    YU Tao, WAN Weixing, LIU Libo, et al. Using IGS data to analysis the global TEC annual and semiannual variation[J]. Chinese Journal of Geophysics, 2006, 49(4): 943-949 doi: 10.3321/j.issn:0001-5733.2006.04.003
    [10] LIU L B, WAN W X, CHEN Y D, et al. Solar activity effects of the ionosphere: a brief review[J]. Chinese Science Bulletin, 2011, 56(12): 1202-1211 doi: 10.1007/s11434-010-4226-9
    [11] HUANG L F, HUANG J, WANG J S, et al. Analysis of the north–south asymmetry of the equatorial ionization anomaly around 110°E longitude[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 102: 354-361 doi: 10.1016/j.jastp.2013.06.010
    [12] LI Yongtao, LI Jianwen, DAI Taogao, et al. Influence of solar activity on ionospheric TEC change[J]. Chinese Journal of Space Science, 2018, 38(6): 847-854 (李涌涛, 李建文, 代桃高, 等. 太阳活动对电离层TEC变化影响分析[J]. 空间科学学报, 2018, 38(6): 847-854 doi: 10.11728/cjss2018.06.847

    LI Yongtao, LI Jianwen, DAI Taogao, et al. Influence of solar activity on ionospheric TEC change[J]. Chinese Journal of Space Science, 2018, 38(6): 847-854 doi: 10.11728/cjss2018.06.847
    [13] MEI Xuefei, LUO Weihua, CAI Hongtao, et al. Characteristic of the equatorial ionization anomaly strength and hemispheric asymmetry based on IGS network during 2001-2008[J]. Chinese Journal of Geophysics, 2019, 62(9): 3235-3246 (梅雪飞, 罗伟华, 蔡红涛, 等. 基于IGS台网观测的2001-2008年赤道电离异常的强度和半球不对称特征[J]. 地球物理学报, 2019, 62(9): 3235-3246

    MEI Xuefei, LUO Weihua, CAI Hongtao, et al. Characteristic of the equatorial ionization anomaly strength and hemispheric asymmetry based on IGS network during 2001-2008[J]. Chinese Journal of Geophysics, 2019, 62(9): 3235-3246
    [14] HUANG L F, WANG J S, JIANG Y, et al. A preliminary study of the single crest phenomenon in Total Electron Content (TEC) in the equatorial anomaly region around 120°E longitude between 1999 and 2012[J]. Advances in Space Research, 2014, 54(11): 2200-2207 doi: 10.1016/j.asr.2014.08.021
    [15] TIAN Yaoyu, HAO Yongqiang, ZHANG Donghe, et al. Single crest phenomenon in the equatorial ionospheric anomaly region and its longitudinal distribution caused by nonmigrating tides[J]. Chinese Journal of Geophysics, 2019, 62(11): 4067-4081 (田耀宇, 郝永强, 张东和, 等. 非迁移潮作用下的电离层赤道异常区单峰现象及其经度分布[J]. 地球物理学报, 2019, 62(11): 4067-4081

    TIAN Yaoyu, HAO Yongqiang, ZHANG Donghe, et al. Single crest phenomenon in the equatorial ionospheric anomaly region and its longitudinal distribution caused by nonmigrating tides[J]. Chinese Journal of Geophysics, 2019, 62(11): 4067-4081
    [16] YANG Y, XIONG C, ZHANG S, et al. The double peak superposition on the equatorial ionization anomaly crests during the 23 April 2023 storm[J]. Geophysical Research Letters, 51, e2024GL108850. DOI: 10.1029 / 2024GL108850
    [17] MANNUCCI A J, WILSON B D, YUAN D N, et al. A global mapping technique for GPS-derived ionospheric total electron content measurements[J]. Radio Science, 1998, 33(3): 565-582 doi: 10.1029/97RS02707
    [18] GULYAEVA T L, ARIKAN F, STANISLAWSKA I. Inter-hemispheric imaging of the ionosphere with the upgraded IRI-Plas model during the space weather storms[J]. Earth, Planets and Space, 2011, 63(8): 929-939 doi: 10.5047/eps.2011.04.007
    [19] LIU L B, WAN W X, NING B Q, et al. Solar activity variations of the ionospheric peak electron density[J]. Journal of Geophysical Research: Space Physics, 2006, 111(A8): A08304
    [20] BALAN N, BAILEY G J. Equatorial plasma fountain and its effects: possibility of an additional layer[J]. Journal of Geophysical Research: Space Physics, 1995, 100(A11): 21421-21432 doi: 10.1029/95JA01555
    [21] RISHBETH H. The equatorial F-layer: progress and puzzles[J]. Annales Geophysicae, 2000, 18(7): 730-739 doi: 10.1007/s00585-000-0730-6
    [22] YEH K C, FRANKE S J, ANDREEVA E S, et al. An investigation of motions of the equatorial anomaly crest[J]. Geophysical Research Letters, 2001, 28(24): 4517-4520 doi: 10.1029/2001GL013897
    [23] XIONG C, LÜHR H, MA S Y. The magnitude and inter-hemispheric asymmetry of equatorial ionization anomaly-based on CHAMP and GRACE observations[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2013, 105-106: 160-169
    [24] TEPLEY C A, ROBLES E, GARCÍA R, et al. Directional trends in thermospheric neutral winds observed at Arecibo during the past three solar cycles[J]. Journal of Geophysical Research: Space Physics, 2011, 116(A2): A00H06
    [25] CAI X G, WANG W B, EASTES R W, et al. Equatorial ionization anomaly discontinuity observed by GOLD, COSMIC-2, and ground-based GPS receivers’ network[J]. Geophysical Research Letters, 2023, 50(10): e2023GL102994. doi: 10.1029/2023GL102994
    [26] MENG X, VERKHOGLYADOVA O P, CHAPMAN S C, et al. Statistical characteristics of total electron content intensifications on global ionospheric maps[J]. Space Weather, 2024, 22(1): e2023SW003695 doi: 10.1029/2023SW003695
    [27] SMITHTRO C G, SOJKA J J. Behavior of the ionosphere and thermosphere subject to extreme solar cycle conditions[J]. Journal of Geophysical Research: Space Physics, 2005, 110(A8): A08306
    [28] DANG T, LUAN X L, LEI J H, et al. A numerical study of the interhemispheric asymmetry of the equatorial ionization anomaly in solstice at solar minimum[J]. Journal of Geophysical Research: Space Physics, 2016, 121(9): 9099-9110 doi: 10.1002/2016JA023012
    [29] MO X H, ZHANG D H, GONCHARENKO L, et al. Meridional movement of northern and southern equatorial ionization anomaly crests in the East-Asian sector during 2002–2003 SSW[J]. Science China Earth Sciences, 2017, 60(4): 776-785 doi: 10.1007/s11430-016-0096-y
    [30] ZHOU Weiqi, YU You, WAN Weixing, et al. Tidal variations of the ionospheric f0F2 in mid-latitude ionosphere[J]. Chinese Journal of Geophysics, 2018, 61(1): 30-42 (周惟琦, 余优, 万卫星, 等. 中纬度电离层f0F2潮汐的变化特性[J]. 地球物理学报, 2018, 61(1): 30-42

    ZHOU Weiqi, YU You, WAN Weixing, et al. Tidal variations of the ionospheric f0F2 in mid-latitude ionosphere[J]. Chinese Journal of Geophysics, 2018, 61(1): 30-42
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  512
  • HTML全文浏览量:  66
  • PDF下载量:  13
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-10-24
  • 修回日期:  2024-12-30
  • 网络出版日期:  2024-12-31

目录

    /

    返回文章
    返回