留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非常规重力条件下燃料电池和电解池实验研究进展

李自航 于瑞佼 叶芳 杜王芳 陈浩 郭航

李自航, 于瑞佼, 叶芳, 杜王芳, 陈浩, 郭航. 非常规重力条件下燃料电池和电解池实验研究进展[J]. 空间科学学报. doi: 10.11728/cjss2025.05.2024-0157
引用本文: 李自航, 于瑞佼, 叶芳, 杜王芳, 陈浩, 郭航. 非常规重力条件下燃料电池和电解池实验研究进展[J]. 空间科学学报. doi: 10.11728/cjss2025.05.2024-0157
LI Zihang, YU Ruijiao, YE Fang, DU Wangfang, CHEN Hao, GUO Hang. Experimental Research Progress on Fuel Cells and Electrolytic Cells under Unconventional Gravity (in Chinese). Chinese Journal of Space Science, 2025, 45(5): 1-12 doi: 10.11728/cjss2025.05.2024-0157
Citation: LI Zihang, YU Ruijiao, YE Fang, DU Wangfang, CHEN Hao, GUO Hang. Experimental Research Progress on Fuel Cells and Electrolytic Cells under Unconventional Gravity (in Chinese). Chinese Journal of Space Science, 2025, 45(5): 1-12 doi: 10.11728/cjss2025.05.2024-0157

非常规重力条件下燃料电池和电解池实验研究进展

doi: 10.11728/cjss2025.05.2024-0157 cstr: 32142.14.cjss.2024-0157
基金项目: 国家自然科学基金项目(11102005, 50406010), 北京市自然科学基金项目(3202007), 中国科学院微重力重点实验室开放课题(NML202409)和中国博士后科学基金面上项目(2024M750150)共同资助
详细信息
    作者简介:
    • 李自航 男, 2001年3月出生于河南省平顶山市, 现为北京工业大学动力工程及工程热物理专业硕士研究生, 主要研究方向为空间应用燃料电池, 质子交换膜燃料电池阴极介质切换. E-mail: Lizihang0306@sohu.com
    通讯作者:
    • 叶芳 女, 1973年出生于浙江省江山市, 北京工业大学机械与能源工程学院, 副教授, 硕士生导师, 主要研究方向为传热传质流动, 氢能与燃料电池电解池, 且在与重力相关的方向上形成特色. E-mail: yefang@bjut.edu.cn
  • 中图分类号: TM911.4,TQ151.1

Experimental Research Progress on Fuel Cells and Electrolytic Cells under Unconventional Gravity

  • 摘要: 燃料电池与电解池可以为空间长期任务和宇航基地提供能源支持, 但是空间中不同的引力水平会对其性能造成影响, 因此开展非常规重力环境中的相关实验研究对于航天用燃料电池与电解池的研发及改进是必要的. 本文综述了非常规重力条件下燃料电池和电解池的实验研究. 分析及讨论表明, 重力水平的改变导致燃料电池与电解池内部气液两相流特性改变, 从而对性能造成不同的影响. 目前仍缺少燃料电池在超重力与长期微重力下的实验数据以及再生燃料电池的非常规重力实验数据. 非常规重力条件下的燃料电池和电解池实验不仅有助于促进流体物理与热物理学与电化学之间的学科交叉, 还将为空间再生燃料电池系统的研发提供数据依据.

     

  • 图  1  微重力下的DMFC流道内两相流观测[30]

    Figure  1.  Observation of two-phase flow in DMFC flow channel under microgravity [30]

    图  2  PEMFC流道两相流观测[38]

    Figure  2.  Observation of two-phase flow in PEMFC flow channel[38]

    图  3  电解池电极表面两相流观测[54]

    Figure  3.  Observation of two-phase flow in electrolytic cell electrode surface [54]

    图  4  不同重力系数G下的电解池极化曲线[70]

    Figure  4.  Electrolytic cell polarization curves under different gravity coefficients G [70]

    表  1  非常规重力燃料电池实验研究总览

    Table  1.   Overview of experimental research on fuel cells under unconventional gravity

    实验方法重力水平研究内容发表时间参考文献
    国际空间站μ g微重力, MFC, 可行性实验2007[12]
    北京落塔<10–2 g, 3.6 s微重力, DMFC, 两相流特征及电性能2007[30]
    北京落塔<10–2 g, 3.6 s微重力, DMFC, 两相流特征及电性能2008[29]
    北京落塔<10–2 g, 3.6 s微重力, DMFC, 电性能2008[31]
    北京落塔<10–2 g, 3.6 s微重力, DMFC, 两相流特征2008[32]
    北京落塔<10–2 g, 3.6 s微重力, DMFC, 不同放置条件2009[34]
    北京落塔<10–2 g, 3.6 s微重力, PEMFC, 两相流特征及电性能2009[37]
    北京落塔<10–2 g, 3.6 s微重力, DMFC, 甲醇进料流量及摩尔浓度2010[35]
    北京落塔<10–2 g, 3.6 s微重力, 全被动 DMFC, 不同倾角2013[33]
    北京落塔<10–2 g, 3.6 s微重力, PEMFC, 不同电流密度2014[40]
    北京落塔<10–2 g, 3.6 s微重力, PEMFC, 不同流场配置2016[41]
    北京落塔<10–2 g, 3.6 s微重力, PEMFC, 不同负载2017[39]
    抛物线飞机2×10–2 g, 30 s微重力, DAAFC, 不同催化剂2017[42]
    抛物线飞机2×10–2 g, 20 s微重力, DAAFC, 不同催化剂载体2017[43]
    货运飞船μ g微重力, PEMFC, 新闻报导, 数据未见公开2022[13]
    下载: 导出CSV

    表  2  非常规重力电解池实验研究总览

    Table  2.   Overview of experimental research on electrolytic cells under unconventional gravity

    研究方法 重力水平 研究内容 发表时间 参考文献
    抛物线飞机 2×10–2 g, 20~25 s 微重力, 气泡特性(未发生合并), 电流密度 1993 [52]
    神奈川落井 10–4 g, 10 s 微重力, 不同电压下气泡特性及电流密度变化 1998 [49]
    离心机 1~190 g 超重力, 不同温度与重力水平下电势变化 2002 [68]
    神奈川落井 10–5 g, 8 s 微重力, 不同电解质中的气泡特性 2003 [53]
    神奈川落井 10–5 g, 8 s 微重力, 气泡运动特性; 提出特征参数 2006 [54]
    神奈川落井 10–5 g, 8 s 微重力, 气泡膜厚度与欧姆电阻相关 2006 [51]
    离心机 1~256 g 超重力, 氯电解反应 2008 [72]
    神奈川落井 10–5 g, 8 s 微重力, 单气泡生长过程 2009 [55]
    离心机 1~256 g 超重力, 超重力的影响机理; 析氢反应 2009 [70]
    离心机 1~451 g 超重力, 不同重力水平与电流密度下的电压损失 2010 [71]
    离心机 1~170 g 超重力, 旋转电池 2011 [75]
    神奈川落井 10–5 g, 10 s 微重力, 静态排水与静态馈电 2013 [50]
    抛物线飞机 10–2 g, 20 s 微重力, 两相电解过程 2013 [57]
    抛物线飞机 10–2 g, 20 s 微重力, 碱性水电解; 气泡过电势 2014 [59]
    抛物线飞机 10–5 g, 20 s 微重力, 单气泡生长规律; 电极表面湿润性的影响 2014 [63]
    不来梅落塔 10–3 g, 3.6 s 微重力, 质子交换电解池; 气泡运动 2015 [58]
    不来梅落塔 10–6 g, 9.3 s 微重力, 光电化学反应; 纳米结构电极 2018 [60]
    离心机 1~271.6 g 超重力, 镍电极; 泡沫镍孔径 2018 [73]
    不来梅落塔 10–6 g, 9.3 s 微重力, 半导体–电催化剂系统; 纳米结构 2019 [61]
    离心机 1~84.5 g 超重力, 超重力场–电解液循环耦合 2021 [74]
    抛物线飞机 10–2 g, 22 s 微重力, 氢气单气泡运动特征 2021 [56]
    不来梅落塔 10–6 g, 9.2 s 微重力, 光化学电解; 电极表面沉积铑 2022 [64]
    离心机 + 抛物线飞机 0~8 g 微重力、月球重力、火星重量以及超重力, 析氧电解效率 2022 [26]
    下载: 导出CSV
  • [1] 吴峰, 叶芳, 郭航, 等. 燃料电池在航天中的应用[J]. 电池, 2007, 37(3): 238-240

    WU Feng, YE Fang, GUO Hang, et al. The application of fuel cells in aerospace[J]. Battery Bimonthly, 2007, 37(3): 238-240
    [2] 杨紫光, 叶芳, 郭航, 等. 航天电源技术研究进展[J]. 化工进展, 2012, 31(6): 1231-1237

    YANG Ziguang, YE Fang, GUO Hang, et al. Progress of space power technology[J]. Chemical Industry and Engineering Progress, 2012, 31(6): 1231-1237
    [3] SCOTT John H. The development of fuel cell technology for electric power generation: from NASA's manned space program to the “Hydrogen Economy”[J]. Proceedings of the IEEE, 2006, 94(10): 1815-1825 doi: 10.1109/JPROC.2006.883702
    [4] 周洁, 郑颖平, 谢吉虹. 制氢技术研究进展及在燃料电池中的应用前景[J]. 化工时刊, 2007, 21(5): 71-75

    ZHOU Jie, ZHENG Yingping, XIE Jihong. Recent advances in hydrogen generation methods and its prospects for applications in fuel cell[J]. Chemical Industry Times, 2007, 21(5): 71-75
    [5] KABIROV V A, SEMENOV V D, TORGAEVA D S, et al. Miniaturization of spacecraft electrical power systems with solar-hydrogen power supply system[J]. International Journal of Hydrogen Energy, 2023, 48(24): 9057-9070 doi: 10.1016/j.ijhydene.2022.12.087
    [6] BELZ S, GANZER B, MESSERSCHMID E, et al. Hybrid life support systems with integrated fuel cells and photobioreactors for a lunar base[J]. Aerospace Science and Technology, 2013, 24(1): 169-176 doi: 10.1016/j.ast.2011.11.004
    [7] MENG Long, WANG Zhe, WANG Lu, et al. Novel and efficient purification of scrap Al-Mg alloys using supergravity technology[J]. Waste Management, 2021, 119: 22-29 doi: 10.1016/j.wasman.2020.09.027
    [8] 许思宇, 李海兵, 尹钊. “国际空间站”环境控制与生命保障系统技术升级分析[J]. 中国航天, 2024(4): 17-24

    XU Siyu, LI Haibing, YIN Zhao. Analysis on the technical upgrades to the international space station environmental control and life support system[J]. Aerospace China, 2024(4): 17-24
    [9] 裴照宇, 彭兢, 张明, 等. 月球科研站能源系统关键技术及发展趋势[J]. 中国电机工程学报, 2023, 43(22): 8689-8700

    PEI Zhaoyu, PENG Jing, ZHANG Ming, et al. Key technologies and development trend of power system for international lunar research station[J]. Proceedings of the CSEE, 2023, 43(22): 8689-8700
    [10] 康琦, 侯瑞. 微重力流体管理在航天工程中的应用[J]. 自然杂志, 2007, 29(6): 328-335

    KANG Qi, HOU Rui. The applications of microgravity fluid management in the aerospace engineering[J]. Chinese Journal of Nature, 2007, 29(6): 328-335
    [11] 韩淋, 王海名, 范唯唯, 等. 2020年国际空间站科研与应用进展[J]. 载人航天, 2021, 27(4): 530-536

    HAN Lin, WANG Haiming, FAN Weiwei, et al. Progress of scientific research and application on the international space station in 2020[J]. Manned Spaceflight, 2021, 27(4): 530-536
    [12] DE VET S J, RUTGERS R. From waste to energy: first experimental bacterial fuel cells onboard the international space station[J]. Microgravity Science and Technology, 2007, 19(5/6): 225-229
    [13] 付毅飞. 我国首台空间应用燃料电池升空[N]. 科技日报, 2022-11-14(005
    [14] STARR Michelle. Breathe deep: how the ISS keeps astronauts alive[EB/OL]. (2015-03-19)[2024-11-07]https://www.cnet.com/science/breathe-deep-how-the-iss-keeps-astronauts-alive/
    [15] 李俊荣, 尹永利, 周抗寒, 等. 空间站电解制氧技术研究进展[J]. 航天医学与医学工程, 2013, 26(3): 215-220

    LI Junrong, YIN Yongli, ZHOU Kanghan, et al. Progress of oxygen generation technology by water electrolysis in space station[J]. Space Medicine :Times New Roman;">& Medical Engineering, 2013, 26(3): 215-220
    [16] 资源再生系统助力空间站长期运行[J]. 中国科学探险, 2022(4): 28-29
    [17] 韦明罡, 万士昕, 姚康庄, 等. 国家微重力实验室落塔及微重力实验研究[J]. 载人航天, 2007(4): 1-3,22
    [18] China) (NMLC)[J]. Science in China Series E Engineering & Materials Science, 2005, 48(3): 305-316 (张孝谦, 袁龙根, 吴文东, 等. 国家微重力实验室百米落塔实验设施的几项关键技术[J]. 中国科学 E辑, 2005, 35(5): 523-534

    ZHANG Xiaoqian, YUAN Longgen, WU Wendong, et al. Some key technics of drop tower experiment device of National Microgravity Laboratory
    [19] KUFNER Ewald, BLUM J, CALLENS N, et al. ESA’s drop tower utilisation activities 2000 to 2011[J]. Microgravity Science and Technology, 2011, 23(4): 409-425 doi: 10.1007/s12217-011-9261-x
    [20] LEKAN Jack, NEUMANN Eric S, SOTOS Raymond G. Capabilities and constraints of NASA's ground-based reduced gravity facilities[C]//The Second International Microgravity Combustion Workshop. Cleveland, Ohio, USA: NASA Lewis Research Center, 1993: 45-60
    [21] 屈斌, 王启, 王海平, 等. 失重飞机飞行方法研究[J]. 飞行力学, 2007, 25(2): 65-67,71

    QU Bin, WANG Qi, WANG Haiping, et al. Zero-g aircraft flight method research[J]. Flight Dynamics, 2007, 25(2): 65-67,71
    [22] 田大可, 范小东, 郑夕健, 等. 空间可展开天线微重力环境模拟研究现状与展望[J]. 机械工程学报, 2021, 57(3): 11-25

    TIAN Dake, FAN Xiaodong, ZHENG Xijian, et al. Research status and prospect of micro-gravity environment simulation for space deployable antenna[J]Journal of Mechanical Engineering, 2021, 57(3): 11-25
    [23] 朱战霞, 袁建平. 航天器操作的微重力环境构建[M]. 北京: 中国宇航出版社, 2013

    ZHU Zhanxia, YUAN Jianping. Construction of Microgravity Environment for Spacecraft Operation[M]. Beijing: China Aerospace Press, 2013
    [24] PLETSER Vlafimir. Short duration microgravity experiments in physical and life sciences during parabolic flights: the first 30 ESA campaigns[J]. Acta Astronautica, 2004, 55(10): 829-854 doi: 10.1016/j.actaastro.2004.04.006
    [25] 林伟岸, 李俊超, 赵宇, 等. ZJU400超重力离心机系统开放共享探讨[J]. 实验技术与管理, 2019, 36(11): 282-285

    LIN Wei’an, LI Junchao, ZHAO Yu, et al. Exploration on opening and sharing of ZJU400 hypergravity centrifuge system[J]. Experimental Technology and Management, 2019, 36(11): 282-285
    [26] LOMAX Bethane A, JUST Gunter H, MCHUGH Patrick J, et al. Predicting the efficiency of oxygen-evolving electrolysis on the Moon and Mars[J]. Nature Communications, 2022, 13(1): 583 doi: 10.1038/s41467-022-28147-5
    [27] MEHTA Viral, COOPER Joyce Smith. Review and analysis of PEM fuel cell design and manufacturing[J]. Journal of Power Sources, 2003, 114(1): 32-53 doi: 10.1016/S0378-7753(02)00542-6
    [28] DUBALE Amare Aregahegn, ZHENG Yuanyuan, WANG Honglei, et al. High-performance bismuth-doped nickel aerogel electrocatalyst for the methanol oxidation reaction[J]. Angewandte Chemie International Edition, 2020, 59(33): 13891-13899 doi: 10.1002/anie.202004314
    [29] 赵建福, 郭航, 叶芳, 等. DMFC内部气液两相流动与电性能的短时落塔实验研究[J]. 空间科学学报, 2008, 28(1): 17-21 doi: 10.11728/cjss2008.01.017

    ZHAO Jianfu, GUO Hang, YE Fang, et al. Experimental study on two-phase flow and power performance of DMFC utilizing the Drop Tower Beijing[J]. Chinese Journal of Space Science, 2008, 28(1): 17-21 doi: 10.11728/cjss2008.01.017
    [30] GUO Hang, ZHAO Jianfu, YE Fang, et al. Two-phase flow in fuel cells in short-term microgravity condition[J]. Microgravity Science and Technology, 2008, 20(3/4): 265-269
    [31] 叶芳, 赵建福, 律翠萍, 等. 燃料电池短时微重力条件下两相流研究[C]//2007多相流学术会议论文集. 大庆: 中国工程热物理学会, 2007: 44-51

    YE Fang, ZHAO Jianfu, LÜ Cuiping, et al. Study of two-phase flow in fuel cells under short-term microgravity[C]//Proceedings of Annual Conference of Multi-Phase Flow. Daqing: Chinese Society of Engineering Thermophysics, 2007: 44-51
    [32] 郭航, 赵建福, 律翠萍, 等. 短时微重力条件下燃料电池性能实验研究[J]. 工程热物理学报, 2008, 29(5): 865-867

    GUO Hang, ZHAO Jianfu, LÜ Cuiping, et al. Experimental study of fuel cells performance in short term microgravity condition[J]. Journal of Engineering Thermophysics, 2008, 29(5): 865-867
    [33] 徐龙云. 基于固态电解质的电解池及燃料电池性能研究[D]. 北京: 北京工业大学, 2013

    XU Longyun. Study of Performance of Fuel Cells and electrolytic Cells Based on Solid Electrolyt[D]. Beijing: Beijing University of Technology, 2013
    [34] GUO Hang, WU Feng, YE Fang, et al. Two-phase flow in anode flow field of a small direct methanol fuel cell in different gravities[J]. Science in China Series E: Technological Sciences, 2009, 52(6): 1576-1582 doi: 10.1007/s11431-009-0179-0
    [35] YE Fang, WU Feng, ZHAO Jianfu, et al. Experimental investigation of performance of a miniature direct methanol fuel cell in short-term microgravity[J]. Microgravity Science and Technology, 2010, 22(3): 347-352 doi: 10.1007/s12217-010-9228-3
    [36] BAROUTAJI Ahmad, WILBERFORCE Tabbi, RAMADAN Mohamad, et al. Comprehensive investigation on hydrogen and fuel cell technology in the aviation and aerospace sectors[J]. Renewable and Sustainable Energy Reviews, 2019, 106: 31-40 doi: 10.1016/j.rser.2019.02.022
    [37] 郭航, 赵建福, 刘璿, 等. 质子交换膜燃料电池短时微重力性能实验研究[J]. 工程热物理学报, 2009, 30(8): 1376-1378

    GUO Hang, ZHAO Jianfu, LIU Xuan, et al. Experimental Study of performance of proton exchange membrane fuel cells in short-term microgravity condition[J]. Journal of Engineering Thermophysics, 2009, 30(8): 1376-1378
    [38] GUO Hang, LIU Xuan, ZHAO Jianfu, et al. Effect of low gravity on water removal inside proton exchange membrane fuel cells (PEMFCs) with different flow channel configurations[J]. Energy, 2016, 112: 926-934 doi: 10.1016/j.energy.2016.07.006
    [39] GUO Hang, LIU Xuan, ZHAO Jianfu, et al. Gas-liquid two-phase flow behaviors and performance characteristics of proton exchange membrane fuel cells in a short-term microgravity environment[J]. Journal of Power Sources, 2017, 353: 1-10 doi: 10.1016/j.jpowsour.2017.03.137
    [40] GUO Hang, LIU Xuan, ZHAO Jianfu, et al. Experimental study of two-phase flow in a proton exchange membrane fuel cell in short-term microgravity condition[J]. Applied Energy, 2014, 136: 509-518 doi: 10.1016/j.apenergy.2014.09.058
    [41] GUO Qing, YE Fang, GUO Hang, et al. Gas/water and heat management of PEM-based fuel cell and electrolyzer systems for space applications[J]. Microgravity Science and Technology, 2017, 29(1/2): 49-63
    [42] ACEVEDO Raul, POVENTUD-ESTRADA Carlos M, MORALES-NAVAS Camila, et al. Chronoamperometric study of ammonia oxidation in a direct ammonia alkaline fuel cell under the influence of microgravity[J]. Microgravity Science and Technology, 2017, 29(4): 253-261 doi: 10.1007/s12217-017-9543-z
    [43] POVENTUD-ESTRADA Carlos M, ACEVEDO Raul, MORALES Camila, et al. Microgravity effects on chronoamperometric ammonia oxidation reaction at platinum nanoparticles on modified mesoporous carbon supports[J]. Microgravity Science and Technology, 2017, 29(5): 381-389 doi: 10.1007/s12217-017-9558-5
    [44] RABAEY L, OSSIEUR W, VERHAEGE M, et al. Continuous microbial fuel cells convert carbohydrates to electricity[J]. Water Science and Technology, 2005, 52(1/2): 515-523
    [45] 倪萌, LEUNG M K H, SUMATHY K. 电解水制氢技术进展[J]. 能源环境保护, 2004, 18(5): 5-9

    NI Meng, LEUNG M K H, SUMATHY K. Progress of hydrogen production through water electrolysis[J]. Energy Environmental Protection, 2004, 18(5): 5-9
    [46] 王飞, 周抗寒, 管春磊, 等. PEM水电解技术在航天上的应用现状与发展趋势[J]. 上海航天(中英文), 2020, 37(2): 23-29

    WANG Fei, ZHOU Kanghan, GUAN Chunlei, et al. Application status and development of PEM water electrolysis in aerospace field[J]. Aerospace Shanghai (Chinese :Times New Roman;">& English), 2020, 37(2): 23-29
    [47] 曾庆堂, 郑传先. 空间站水电解制氧技术[J]. 航天医学与医学工程, 1990, 3(3): 222-226
    [48] 周抗寒, 韩永强, 李俊荣. 空间站电解制氧技术研究[J]. 载人航天, 2003(5): 25-29
    [49] IWASAKI A, KANEKO H, ABE Y, et al. Investigation of electrochemical hydrogen evolution under microgravity condition[J]. Electrochimica Acta, 1998, 43(5/6): 509-514
    [50] SAKURAI Masato, SONE Yoshitsugu, NISHIDA Tetsuo, et al. Fundamental study of water electrolysis for life support system in space[J]. Electrochimica Acta, 2013, 100: 350-357 doi: 10.1016/j.electacta.2012.11.112
    [51] KIUCHI Daisuke, MATSUSHIMA Hisayoshi, FUKUNAKA Yasuhiro, et al. Ohmic resistance measurement of bubble froth layer in water electrolysis under microgravity[J]. Journal of The Electrochemical Society, 2006, 153(8): E138-E143 doi: 10.1149/1.2207008
    [52] KANEKO Hiroko, TANAKA Kotaro, IWASAKI Akira, et al. Water electrolysis under microgravity condition by parabolic flight[J]. Electrochimica Acta, 1993, 38(5): 729-733 doi: 10.1016/0013-4686(93)80245-U
    [53] MATSUSHIMA H, NISHIDA T, KONISHI Y, et al. Water electrolysis under microgravity: part 1. experimental technique[J]. Electrochimica Acta, 2003, 48(28): 4119-4125 doi: 10.1016/S0013-4686(03)00579-6
    [54] MATSUSHIMA H, FUKUNAKA Y, KURIBAYASHI K. Water electrolysis under microgravity: part II. description of gas bubble evolution phenomena[J]. Electrochimica Acta, 2006, 51(20): 4190-4198 doi: 10.1016/j.electacta.2005.11.046
    [55] MATSUSHIMA Hisayoshi, KIUCHI Daisuke, FUKUNAKA Yasuhiro, et al. Single bubble growth during water electrolysis under microgravity[J]. Electrochemistry Communications, 2009, 11(8): 1721-1723 doi: 10.1016/j.elecom.2009.07.009
    [56] BASHKATOV Aleksandr, YANG Xuegeng, MUTSCHKE Gerd, et al. Dynamics of single hydrogen bubbles at Pt microelectrodes in microgravity[J]. Physical Chemistry Chemical Physics, 2021, 23(20): 11818-11830 doi: 10.1039/D1CP00978H
    [57] DERHOUMI Zine, MANDIN Philippe, ROUSTAN Hervé, et al. Experimental investigation of two-phase electrolysis processes: comparison with or without gravity[J]. Journal of Applied Electrochemistry, 2013, 43(12): 1145-1161 doi: 10.1007/s10800-013-0598-2
    [58] 程俊. 不同重力下质子交换膜电解池性能及其内部两相流研究[D]. 北京: 北京工业大学, 2015

    CHENG Jun. Study of Performance and Two-Phase Flow of PEM Electrolyzer Under Different Gravity Conditions[D]. Beijing: Beijing University of Technology, 2015
    [59] MANDIN Philippe, DERHOUMI Zine, ROUSTAN Hervé, et al. Bubble over-potential during two-phase alkaline water electrolysis[J]. Electrochimica Acta, 2014, 128: 248-258 doi: 10.1016/j.electacta.2013.11.068
    [60] BRINKERT Katharina, RICHTER Matthias H, AKAY Ömer, et al. Efficient solar hydrogen generation in microgravity environment[J]. Nature Communications, 2018, 9(1): 2527 doi: 10.1038/s41467-018-04844-y
    [61] BRINKERT Katharina, AKAY Ömer, RICHTER Matthias H, et al. Experimental methods for efficient solar hydrogen production in microgravity environment[J]. Journal of Visualized Experiments: Jove, 2019(154): 59122
    [62] 张策, 杨金禄, 尹钊, 等. 基于仿生功能器件的地外水分解制氢技术[J]. 中国空间科学技术, 2023, 43(6): 83-90

    ZHANG Ce, YANG Jinlu, YIN Zhao, et al. Extraterrestrial hydrogen production technology based on bionic functional water splitting devices[J]. Chinese Space Science and Technology, 2023, 43(6): 83-90
    [63] SAKUMA Go, FUKUNAKA Yasuiro, MATSUSHIMA Hisayoshi. Nucleation and growth of electrolytic gas bubbles under microgravity[J]. International Journal of Hydrogen Energy, 2014, 39(15): 7638-7645 doi: 10.1016/j.ijhydene.2014.03.059
    [64] AKAY Ömer, POON Jeffery, ROBERTSON Craig, et al. Releasing the bubbles: nanotopographical electrocatalyst design for efficient photoelectrochemical hydrogen production in microgravity environment[J]. Advanced Science, 2022, 9(8): 2105380 doi: 10.1002/advs.202105380
    [65] 重庆大学. 一种微重力磁场驱动强化电解水制氧/制氢的装置: CN, 201610553399.5[P]. 2016-11-23

    Chongqing University. Device for driving and enhancing electrolytic water through microgravity magnetic field for oxygen production/hydrogen production: CN, 201610553399.5[P]. 2016-11-23
    [66] 航天神舟生物科技集团有限公司. 空间微重力环境下的氢分子水制备装置和方法: CN, 201810882126.4[P]. 2019-01-01

    Shenzhou Tianchen Technology Industry Co. Ltd. Hydrogen molecule water preparation device and method under space microgravity environment: CN, 201810882126.4[P]. 2019-01-01
    [67] 赵建福, 彭超, 李晶, 等. 静态水气分离特性的失重飞机实验研究[J]. 工程热物理学报, 2011, 32(5): 799-802

    ZHAO Jianfu, PENG Chao, LI Jing, et al. Experimental study on performance of a static water-air two-phase separator aboard reduced gravity airplane[J]. Journal of Engineering Thermophysics, 2011, 32(5): 799-802
    [68] CHENG H, SCOTT K, RAMSHAW C. Intensification of water electrolysis in a centrifugal field[J]. Journal of the Electrochemical Society, 2002, 149(11): D172 doi: 10.1149/1.1512916
    [69] 王明涌. 超重力强化电解制氢及电沉积高效析氢电极[D]. 北京: 中国科学院大学, 2011

    WANG Mingyong. Intensified Electrolysis for Hydrogen Production and Electrodeposition of Electrode Materials with Excellent Properties for Hydrogen Evolution Reaction Under Super Gravity Field[D]. Beijing: University of Chinese Academy of Sciences, 2011
    [70] WANG Mingyong, WANG Zhi, GUO Zhancheng. Understanding of the intensified effect of super gravity on hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2009, 34(13): 5311-5317 doi: 10.1016/j.ijhydene.2009.05.043
    [71] WANG Mingyong, WANG Zhi, GUO Zhancheng. Water electrolysis enhanced by super gravity field for hydrogen production[J]. International Journal of Hydrogen Energy, 2010, 35(8): 3198-3205 doi: 10.1016/j.ijhydene.2010.01.128
    [72] 王明涌, 邢海青, 王志, 等. 超重力强化氯碱电解反应[J]. 物理化学学报, 2008, 24(3): 520-526 doi: 10.3866/PKU.WHXB20080330

    WANG Mingyong, XING Haiqing, WANG Zhi, et al. Investigation of chlor-alkali electrolysis intensified by super gravity[J]. Acta Physico-Chimica Sinica, 2008, 24(3): 520-526 doi: 10.3866/PKU.WHXB20080330
    [73] 邱鑫乐, 孟龙, 钟怡玮, 等. 超重力对镍电极电解制氢的强化研究[J]. 有色金属科学与工程, 2018, 9(6): 11-17

    QIU Xinle, MENG Long, ZHONG Yiwei, et al. Effect of super gravity on the hydrogen production enhancement by nickel electrode electrolysis[J]. Nonferrous Metals Science and Engineering, 2018, 9(6): 11-17
    [74] 余瑜, 邱鑫乐, 钟怡玮, 等. 超重力场–电解液循环耦合强化水电解制氢[J]. 江西冶金, 2021, 41(3): 10-14

    YU Yu, QIU Xinle, ZHONG Yiwei, et al. Enhancing water electrolysis for hydrogen production by coupling super gravity field and electrolyte[J]. Jiangxi Metallurgy, 2021, 41(3): 10-14
    [75] LAO L, RAMSHAW C, YEUNG H. Process intensification: water electrolysis in a centrifugal acceleration field[J]. Journal of Applied Electrochemistry, 2011, 41(6): 645-656 doi: 10.1007/s10800-011-0275-2
    [76] 郭越玖. 一种超旋转离心重力水电解制氢方法及装置: CN, 201210518651.0[P]. 2013-03-20

    GUO Yuejiu. Water electrolysis hydrogen preparing method and device employing super-rotating centrifugal gravity: CN, 201210518651.0[P]. 2013-03-20
    [77] ARSAILS Alexandros, PAPANASTASIOU Panos, GEORGHIOU George E. A comparative review of lithium-ion battery and regenerative hydrogen fuel cell technologies for integration with photovoltaic applications[J]. Renewable Energy, 2022, 191: 943-960 doi: 10.1016/j.renene.2022.04.075
    [78] 中国科学院大连化学物理研究所. 一种可再生燃料电池: CN, 201811527777.8[P]. 2020-06-23

    Dalian Institute of Chemical Physics Chinese Academy of Sciences. Renewable fuel cell: CN, 201811527777.8[P]. 2020-06-23
    [79] 北京航天动力研究所. 一种高压大流量微重力离心气液分离装置: CN, 201610169496.4[P]. 2016-06-08

    Beijing Aerospace Propulsion Institute. High-pressure high-flow microgravity centrifugal gas and liquid separation device: CN, 201610169496.4[P]. 2016-06-08
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  594
  • HTML全文浏览量:  23
  • PDF下载量:  14
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-11-07
  • 修回日期:  2024-12-30
  • 网络出版日期:  2024-12-31

目录

    /

    返回文章
    返回