[1] |
叶培建, 邹乐洋, 王大轶, 等. 中国深空探测领域发展及展望[J]. 国际太空, 2018(10): 4-10YE Peijian, ZOU Leyang, WANG Dayi, et al. Development and prospect of Chinese deep space exploration[J]. Space International, 2018(10): 4-10
|
[2] |
吴伟仁, 王赤, 刘洋, 等. 深空探测之前沿科学问题探析[J]. 科学通报, 2023, 68(6): 606-627 doi: 10.1360/TB-2022-0667WU Weiren, WANG Chi, LIU Yang, et al. Frontier scientific questions in deep space exploration[J]. Chinese Science Bulletin, 2023, 68(6): 606-627 doi: 10.1360/TB-2022-0667
|
[3] |
张荣桥, 黄江川, 赫荣伟, 等. 小行星探测发展综述[J]. 深空探测学报, 2019, 6(5): 417-423,455ZHANG Rongqiao, HUANG Jiangchuan, HE Rongwei, et al. The development overview of asteroid exploration[J]. Journal of Deep Space Exploration, 2019, 6(5): 417-423,455
|
[4] |
吴伟仁, 于登云. 深空探测发展与未来关键技术[J]. 深空探测学报, 2014, 1(1): 5-17WU Weiren, YU Dengyun. Development of deep space exploration and its future key technologies[J]. Journal of Deep Space Exploration, 2014, 1(1): 5-17
|
[5] |
李春来, 刘建军, 任鑫, 等. 基于嫦娥二号立体影像的全月高精度地形重建[J]. 武汉大学学报·信息科学版, 2018, 43(4): 485-495LI Chunlai, LIU Jianjun, REN Xin, et al. Lunar global high-precision terrain reconstruction based on Chang'E-2 stereo images[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 485-495
|
[6] |
吴伟仁, 王琼, 唐玉华, 等. “嫦娥4号”月球背面软着陆任务设计[J]. 深空探测学报, 2017, 4(2): 111-117WU Weiren, WANG Qiong, TANG Yuhua, et al. Design of Chang'E-4 lunar farside soft-landing mission[J]. Journal of Deep Space Exploration, 2017, 4(2): 111-117
|
[7] |
ZHANG Q W L, YANG M H, LI Q L, et al. Lunar farside volcanism 2.8 billion years ago from Chang’e-6 basalts[J]. Nature, 2025, 643(8071): 356-360 doi: 10.1038/s41586-024-08382-0
|
[8] |
LI Q L, ZHOU Q, LIU Y, et al. Two-billion-year-old volcanism on the Moon from Chang’e-5 basalts[J]. Nature, 2021, 600(7887): 54-58 doi: 10.1038/s41586-021-04100-2
|
[9] |
葛平, 姜亦宸, 孙宇, 等. 2024年深空探测进展与展望[J]. 中国航天, 2025(1): 28-38GE Ping, JIANG Yichen, SUN Yu, et al. Progress and prospects of deep space exploration in 2024[J]. Aerospace China, 2025(1): 28-38
|
[10] |
LI C, ZHENG Y K, WANG X, et al. Layered subsurface in Utopia Basin of Mars revealed by Zhurong rover radar[J]. Nature, 2022, 610(7931): 308-312 doi: 10.1038/s41586-022-05147-5
|
[11] |
李春来, 刘建军, 任鑫, 等. “天问二号”任务科学目标和有效载荷配置[J]. 深空探测学报(中英文), 2024, 11(3): 304-310LI Chunlai, LIU Jianjun, REN Xin, et al. Scientific objectives and payloads configuration of the Tianwen-2 mission[J]. Journal of Deep Space Exploration, 2024, 11(3): 304-310
|
[12] |
刘继忠, 胡朝斌, 庞涪川, 等. 深空探测发展战略研究[J]. 中国科学: 技术科学, 2020, 50(9): 1126-1139 doi: 10.1360/SST-2020-0207LIU Jizhong, HU Chaobin, PANG Fuchuan, et al. Strategy of deep space exploration[J]. SCIENTIA SINICA Technologica, 2020, 50(9): 1126-1139 doi: 10.1360/SST-2020-0207
|
[13] |
童小华, 刘世杰, 谢欢, 等. 从地球测绘到地外天体测绘[J]. 测绘学报, 2022, 51(4): 488-500TONG Xiaohua, LIU Shijie, XIE Huan, et al. From Earth mapping to extraterrestrial planet mapping[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(4): 488-500
|
[14] |
高文. 抢抓人工智能发展的历史性机遇——深刻领会习近平总书记关于人工智能的重要论述[J]. 中国信息化, 2025(2): 6-9GAO Wen. Seizing the Historic Opportunity for the Development of Artificial Intelligence: Deeply Comprehend General Secretary Xi Jinping’s Important Expositions on Artificial Intelligence[J]. China Information Technology, 2025(2): 6-9
|
[15] |
PERES R S, JIA X D, LEE J, et al. Industrial artificial intelligence in industry 4.0-systematic review, challenges and outlook[J]. IEEE Access, 2020, 8: 220121-220139 doi: 10.1109/ACCESS.2020.3042874
|
[16] |
MANDAL V, MUSSAH A R, JIN P, et al. Artificial intelligence-enabled traffic monitoring system[J]. Sustainability, 2020, 12(21): 9177 doi: 10.3390/su12219177
|
[17] |
HAMET P, TREMBLAY J. Artificial intelligence in medicine[J]. Metabolism, 2017, 69: S36-S40 doi: 10.1016/j.metabol.2017.01.011
|
[18] |
孙璞, 袁维佳, 孙凤丽, 等. 航天产业数字化转型发展战略研究[J]. 中国工程科学, 2025, 27(2): 216-229 doi: 10.15302/J-SSCAE-2025.01.022SUN Pu, YUAN Weijia, SUN Fengli, et al. Digital transformation strategy of aerospace industry[J]. Strategic Study of CAE, 2025, 27(2): 216-229 doi: 10.15302/J-SSCAE-2025.01.022
|
[19] |
李国杰. 智能化科研(AI4R): 第五科研范式[J]. 中国科学院院刊, 2024, 39(1): 1-9LI Guojie. AI4R: the fifth scientific research paradigm[J]. Bulletin of Chinese Academy of Sciences, 2024, 39(1): 1-9
|
[20] |
National Aeronautics and Space Administration. Planetary data system roadmap study for 2017-2026[R]. Greenbelt: National Aeronautics and Space Administration, 2017
|
[21] |
BHATTACHARJEE B, TRIVEDI A, MURAOKA M, et al. INDUS: effective and efficient language models for scientific applications[C]//Proceedings of 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track. Miami: Association for Computational Linguistics, 2024: 98-112
|
[22] |
RAGA F, DOCASAL R, OSINDE J, et al. ESA’s PSA: new interface, exploring planetary data[C]//Proceedings of the 55th Lunar and Planetary Science Conference. Woodland: LPSC, 2024: 1496
|
[23] |
PAZ M. A submillisecond Fourier and wavelet-based model to extract variable candidates from the NEOWISE single-exposure database[J]. The Astronomical Journal, 2024, 168(6): 241 doi: 10.3847/1538-3881/ad7fe6
|
[24] |
HUGHES S P. General mission analysis tool (GMAT)[R]. National Aeronautics and Space Administration, 2016
|
[25] |
MALDAGUE P F, WISSLER S S, LENDA M D, et al. APGEN scheduling: 15 years of experience in planning automation[C]//Proceedings of the SpaceOps 2014 Conference. Pasadena: AIAA, 2014: 1809
|
[26] |
FERRA L, COSTANTINI M, SALING F, et al. Assisting engineering, training and operations for human spaceflight applications using eXtended Reality (XR) technologies[C]//Proceedings of the AR/VR for Space Programmes 2023. The Netherlands: ESA/ESTEC, 2023
|
[27] |
HUSSEY K. NASA's "eyes on the solar system: " a real-time, 3D-interactive tool to teach the wonder of planetary science[C]//Proceedings of the American Geophysical Union, Fall Meeting 2014. San Francisco: AGU, 2014: ED33C-02
|
[28] |
ACCOMAZZI A. Decades of transformation: evolution of the NASA astrophysics data system's infrastructure[OL]. arXiv preprint arXiv: 2401.09685, 2024
|
[29] |
BLANCO-CUARESMA S, CIUCĂ I, ACCOMAZZI A, et al. Experimenting with large language models and vector embeddings in NASA SciX[OL]. arXiv preprint arXiv: 2312.14211, 2023
|
[30] |
CROSBY N, STOYANOVA K, DAYAL R, et al. Development of a knowledge graph for dataset discovery and identification at a NASA data center[C]//Proceedings of the AGU Fall Meeting 2021. American Geophysical Union, 2021
|
[31] |
CASTILLA-ARQUILLO R, PAZ-DELGADO G J, MADI M, et al. Virtual reality lab for rover navigation using mars datasets[C]//Proceedings of 2024 International Conference on Space Robotics (iSpaRo). Luxembourg: IEEE, 2024: 315-320
|
[32] |
SOBUE S I, SASAKI S, KATO M, et al. KAGUYA (SELENE) education and public outreach activity[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2010, 8(ists27): Tu_5-Tu_8
|
[33] |
ZUO W, LI C L, ZHANG Z B, et al. China’s lunar and planetary data system: preserve and present reliable chang’e project and Tianwen-1 scientific data sets[J]. Space Science Reviews, 2021, 217(1): 88
|
[34] |
李晨帆, 姚佩雯, 刘翔, 等. 面向中国深空探测任务的行星数据系统的设计与实现[J]. 遥感学报, 2021, 25(2): 599-613 doi: 10.11834/jrs.20210157LI Chenfan, YAO Peiwen, LIU Xiang, et al. Design and implementation of a planetary data system for Chinese deep space exploration[J]. National Remote Sensing Bulletin, 2021, 25(2): 599-613 doi: 10.11834/jrs.20210157
|
[35] |
孙鹏举, 刘建忠, 王俊涛, 等. 数字月球云平台设计[J]. 矿物岩石地球化学通报, 2022, 41(1): 135-142SUN Pengju, LIU Jianzhong, WANG Juntao, et al. Design of digital lunar cloud-based platform[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2022, 41(1): 135-142
|
[36] |
薄正. 空间基准统一的数字月球系统关键技术及应用研究[D]. 北京: 中国科学院大学(中国科学院空天信息创新研究院), 2022BO Zheng. Research on Key Technologies and Applications of Digital Lunar System with Unified Spatial Reference[D]. Beijing: University of Chinese Academy of Sciences, 2022
|
[37] |
雷丹泓, 刘建忠, 朱凯, 等. 月球与行星科学多模态大模型的概念及应用初探[J]. 矿物岩石地球化学通报, 2024, 43(2): 343-351LEI Danhong, LIU Jianzhong, ZHU Kai, et al. A first look at the concept and application of multimodal large models for lunar and planetary science[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2024, 43(2): 343-351
|
[38] |
赵之若, 王少宇, 王心宇, 等. 一种改进的火星车多光谱影像深度新颖目标探测方法[J]. 武汉大学学报·信息科学版, 2022, 47(8): 1328-1335,1348ZHAO Zhiruo, WANG Shaoyu, WANG Xinyu, et al. An improved deep novel target detection method for mars rover multispectral imagery[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1328-1335,1348
|
[39] |
GUO Z X, XU Y, LI D, et al. Martian dust devil detection based on improved faster R-CNN[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2024, 17: 7725-7737 doi: 10.1109/JSTARS.2024.3367848
|
[40] |
JIANG S C, LIAN Z K, YUNG K L, et al. Automated detection of multitype landforms on mars using a light-weight deep learning-based detector[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 5015-5029 doi: 10.1109/TAES.2022.3169454
|
[41] |
GUO J L, ZHANG X Y, DONG Y P, et al. Terrain classification using mars raw images based on deep learning algorithms with application to wheeled planetary rovers[J]. Journal of Terramechanics, 2023, 108: 33-38 doi: 10.1016/j.jterra.2023.04.002
|
[42] |
WANG X Y, QU H K, WANG Z Y, et al. Application of deep learning on quantitative analysis of binary solid dispersions by UV Raman spectroscopy for planetary exploration[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2025, 339: 126154 doi: 10.1016/j.saa.2025.126154
|
[43] |
于国斌. 深空探测任务协同的系统工程方法应用及趋势[J]. 深空探测学报(中英文), 2021, 8(4): 407-415YU Guobin. Application and trend of model-based systems engineering methods for deep space exploration mission[J]. Journal of Deep Space Exploration, 2021, 8(4): 407-415
|
[44] |
关锋, 葛平, 邵艳利, 等. 基于MBSE的月球科研站任务分析[J]. 航空工程进展, 2023, 14(3): 84-99GUAN Feng, GE Ping, SHAO Yanli, et al. Mission analysis of lunar scientific research station based on MBSE[J]. Advances in Aeronautical Science and Engineering, 2023, 14(3): 84-99
|
[45] |
关锋, 葛平, 周国栋, 等. MBSE发展趋势与中国探月工程并行协同论证[J]. 空间科学学报, 2022, 42(2): 183-190 doi: 10.11728/cjss2022.02.210804082GUAN Feng, GE Ping, ZHOU Guodong, et al. Development trend of MBSE and investigation of concurrent collaborative demonstration for Chinese lunar exploration program[J]. Chinese Journal of Space Science, 2022, 42(2): 183-190 doi: 10.11728/cjss2022.02.210804082
|
[46] |
刘继忠, 葛平, 康焱, 等. 深空探测科学目标谱系构建方案探索[J]. 深空探测学报(中英文), 2024, 11(1): 79-89LIU Jizhong, GE Ping, KANG Yan, et al. Study on the construction scheme of mega interconnected knowledge systems in deep space exploration[J]. Journal of Deep Space Exploration, 2024, 11(1): 79-89
|
[47] |
于登云, 张哲, 泮斌峰, 等. 深空探测人工智能技术研究与展望[J]. 深空探测学报, 2020, 7(1): 11-23YU Dengyun, ZHANG Zhe, PAN Binfeng, et al. Development and trend of artificial intelligent in deep space exploration[J]. Journal of Deep Space Exploration, 2020, 7(1): 11-23
|
[48] |
叶培建, 孟林智, 马继楠, 等. 深空探测人工智能技术应用及发展建议[J]. 深空探测学报, 2019, 6(4): 303-316,383YE Peijian, MENG Linzhi, MA Jinan, et al. Suggestions on artificial intelligence technology application and development in deep space exploration[J]. Journal of Deep Space Exploration, 2019, 6(4): 303-316,383
|
[49] |
中国科学院月球与深空探测总体部. 嫦娥三号任务: 中科院勇挑重担[EB/OL]. (2013-12-03)[2025-07-31]. https://www.cas.cn/zt/kjzt/ce3/jzjd/201312/t20131203_3989407.shtmlGeneral Office of Lunar and Deep Space Exploration, CAS. Chang'e-3 mission: Chinese Academy of Sciences bravely shoulders the heavy responsibility[EB/OL]. (2013-12-03)[2025-07-31]. https://www.cas.cn/zt/kjzt/ce3/jzjd/201312/t20131203_3989407.shtml
|
[50] |
中国气象局. 嫦娥卫星工程[EB/OL]. (2022-09-02)[2025-07-31]. https://www.cma.gov.cn/ztbd/2022zt/20220901/2022090104/202209010402/202209/t20220902_5067007.htmlChina Meteorological Administration. Chang'e satellite project[EB/OL]. (2022-09-02)[2025-07-31]. https://www.cma.gov.cn/ztbd/2022zt/20220901/2022090104/202209010402/202209/t20220902_5067007.html
|
[51] |
刘建军, 苏彦, 左维, 等. 中国首次火星探测任务地面应用系统[J]. 深空探测学报, 2018, 5(5): 414-425LIU Jianjun, SU Yan, ZUO Wei, et al. Ground research and application system of China's first mars exploration mission[J]. Journal of Deep Space Exploration, 2018, 5(5): 414-425
|
[52] |
邢琰, 滕宝毅, 黄煌, 等. 自主智能微小机器人技术及其月面应用[J]. 空间控制技术与应用, 2024, 50(6): 64-72XING Yan, TENG Baoyi, HUANG Huang, et al. The technology of autonomous intelligent miniature robot and its application on lunar surface[J]. Aerospace Control and Application, 2024, 50(6): 64-72
|
[53] |
郑燕红, 张高, 邓湘金, 等. 嫦娥六号月背采样封装系统设计与实现[J]. 中国科学: 技术科学, 2025, 55(7): 1182-1193 doi: 10.1360/SST-2024-0299ZHENG Yanhong, ZHANG Gao, DENG Xiangjin, et al. Design and implementation of the Chang’e-6 sampling and encapsulation system for the far side moon mission[J]. SCIENTIA SINICA Technologica, 2025, 55(7): 1182-1193 doi: 10.1360/SST-2024-0299
|
[54] |
黄翔宇, 徐超, 郭敏文. 地外天体软着陆自主导航与控制技术研究进展[J]. 深空探测学报(中英文), 2024, 11(1): 3-15HUANG Xiangyu, XU Chao, GUO Minwen. Research progress of autonomous navigation and control technology for extraterrestrial soft landing[J]. Journal of Deep Space Exploration, 2024, 11(1): 3-15
|
[55] |
张荣桥, 张熇, 刘建军, 等. 天问二号小天体探测任务[J]. 中国科学: 物理学 力学 天文学, 2025, 55(7): 6-15ZHANG Rongqiao, ZHANG He, LIU Jianjun, et al. Tianwen-2 small bodies exploration mission[J]. SCIENTIA SINICA Physica, Mechanica :Times New Roman;">& Astronomica, 2025, 55(7): 6-15
|
[56] |
北京市科学技术委员会, 中关村科技园区管理委员会. 中国航天系统科学与工程研究院[EB/OL]. (2024-01-05)[2025-07-02]. https://kw.beijing.gov.cn/ztzl/rdzt/kpbj/kpjd/202401/t20240105_3799041.htmlBeijing Municipal Science and Technology Commission, Administrative Commission of Zhongguancun Science Park. China Aerospace Academy of Systems Science and Engineering[EB/OL]. (2024-01-05)[2025-07-02]. https://kw.beijing.gov.cn/ztzl/rdzt/kpbj/kpjd/202401/t20240105_3799041.html
|
[57] |
杨宝光. 航天科普公益课为青少年开启“太空梦”[EB/OL]. (2020-09-27)[2025-07-02]. http://www.csu.cas.cn/gb/kxcb/202009/t20200927_5705948.htmlYANG Baoguang. Aerospace science outreach programs inspire the next generation's ‘space dreams’[EB/OL]. (2020-09-27)[2025-07-02]. http://www.csu.cas.cn/gb/kxcb/202009/t20200927_5705948.html
|
[58] |
LIN D W, CRABTREE J, DILLO I, et al. The TRUST Principles for digital repositories[J]. Scientific Data, 2020, 7(1): 144 doi: 10.1038/s41597-020-0486-7
|