留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高轨电磁频谱监测载荷应用及资源管控

孙正波 周晓光 义余江

孙正波, 周晓光, 义余江. 高轨电磁频谱监测载荷应用及资源管控[J]. 空间科学学报. doi: 10.11728/cjss2025.06.2024-0096
引用本文: 孙正波, 周晓光, 义余江. 高轨电磁频谱监测载荷应用及资源管控[J]. 空间科学学报. doi: 10.11728/cjss2025.06.2024-0096
SUN Zhengbo, ZHOU Xiaoguang, YI Yujiang. Payload Application and Resource Management for GEO Satellite-based Electromagnetic Spectrum Monitoring (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1-10 doi: 10.11728/cjss2025.06.2024-0096
Citation: SUN Zhengbo, ZHOU Xiaoguang, YI Yujiang. Payload Application and Resource Management for GEO Satellite-based Electromagnetic Spectrum Monitoring (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1-10 doi: 10.11728/cjss2025.06.2024-0096

高轨电磁频谱监测载荷应用及资源管控

doi: 10.11728/cjss2025.06.2024-0096 cstr: 32142.14.cjss.2024-0096
详细信息
    作者简介:
    • 孙正波 男, 1975年出生于山东省青岛市, 博士, 现在西南电子电信技术研究所正高级工程师、重点实验室主任、博士生导师, 主要研究方向为卫星系统设计应用、信号处理与定位技术. E-mail: szb_57@sina.com
    • 周晓光 男, 1981年出生于云南省昭通市, 博士, 现为西南电子电信技术研究所高级工程师, 主要研究方向为信号处理、卫星载荷应用管理、卫星地面系统设计. E-mail: xguang.zhou@foxmail.com
  • 中图分类号: V44, V474

Payload Application and Resource Management for GEO Satellite-based Electromagnetic Spectrum Monitoring

  • 摘要: 电磁频谱监测是对电磁频谱这种重要战略资源进行分配、应用和管理的关键环节, 是政府无线电管理部门的一项重要任务. 电磁频谱监测的手段较多, 但多以地基为主, 存在较大的局限性. 基于天基平台的电磁频谱监测系统(Electromagnetic Spectrum Monitoring Systems)是广域电磁频谱监测的有效途径和研究热点, 相关产业随着航天、电子和信息等技术的发展逐渐规模化. 与低轨电磁频谱监测相比, 高轨电磁频谱监测具有任务响应速度快、数据接收处理时效性高、可全天时全天候连续监测等优点. 与高轨电磁频谱监测相关的公开报道很少. 本文从高轨电磁频谱监测的体制特点出发, 对载荷资源应用模式、载荷资源管控技术、应用系统等进行研究和针对性设计, 并提出需要进一步攻研的关键技术, 以期对该类卫星的设计和应用有一定指导意义.

     

  • 图  1  电磁频谱监测卫星信号接收

    Figure  1.  Satellite-based signal reception for electromagnetic spectrum monitoring

    图  2  多星协同定位原理

    Figure  2.  Satellite-satellite-collaborative location of interference sources

    图  3  星地联合时差定位原理

    Figure  3.  Satellite-ground-collaborative location based on TDOA

    图  4  需求统筹与任务生成流程

    Figure  4.  Requirements analysis and tasks generation

    图  5  任务动态集散式拆分合并

    Figure  5.  Dynamic splitting and uniting for task scheduling

    图  6  任务空间分布

    Figure  6.  Distribution of tasks

    图  7  任务规划收益率

    Figure  7.  Rate of profit for task scheduling

    图  8  任务规划完成情况

    Figure  8.  Completion of task scheduling

    表  1  两种规划流程的比较

    Table  1.   Comparison of two scheduling procedures

    场景 特性 流程一 流程二
    场景一  任务一次可完成的功能组合多, 同时拆分后子任务差异性小, 可合并性强, 待规划任务数量大 优化效果更好
    时效性差
    优化效果其次
    时效性好
    场景二  任务一次可完成的功能组合少, 同时拆分后子任务差异性大, 任务可合并性弱 优化效果相当
    时效性差 时效性好
    场景三  任务在功能上不能合并, 待规划任务数量大 优化效果相当
    时效性很差 时效性很好
    下载: 导出CSV

    表  2  低轨与高轨天基电磁频谱监测应用系统比较

    Table  2.   Comparison of LEO and GEO satellite-based ESM application systems

    低轨天基电磁频谱
    监测应用系统
    高轨天基电磁频谱
    监测应用系统
    测控站数量 为保证测控时效性,
    通常需要多个
    一个即可
    接收站数量 为保证接收时效性和数据量, 通常需要多个 一个即可
    地面站使用 卫星过境时间有限, 地面站可由不同卫星系统共用 通常由固定卫星独立
    占用, 一般不共用
    地面站天线口径 相对较小 相对较大
    任务规划时效性 要求相对较低 要求高
    数据处理时效性 要求相对较低 要求高
    下载: 导出CSV

    表  3  卫星初始轨道根数

    Table  3.   Orbital elements of satellites

    GEOLEO
    Semimajor axis/km42164.97066.56
    Eccentricity0.00029650.0014698
    Inclination/(°)3.215597.9165
    Argument of perigee/(°)150.874204.361
    RAAN/(°)27.9009276.394
    Mean anomaly/(°)259.812155.69
    下载: 导出CSV
  • [1] COTTON M, WEPMAN J, KUB J, et al. An Overview of the NTIA/NIST Spectrum Monitoring Pilot Program[C]//IEEE Wireless Communications and Networking Conference (WCNC)-Workshop-International Workshop on Smart Spectrum, 2015: 217-222
    [2] SU Hang, MA Qin, et al. Micro-satellite based electromagnetic spectrum detection system technologies[J]. Aerospace Electronic Warfare, 2018, 6: 6-10 (苏杭, 马琴等. 基于微纳卫星的电磁频谱监测系统技术[J]. 航天电子对抗, 2018, 6: 6-10

    SU Hang, MA Qin, et al. Micro-satellite based electromagnetic spectrum detection system technologies[J]. Aerospace Electronic Warfare, 2018, 6: 6-10
    [3] WANG Yunfeng, DING Xiaojin, HONG Tao, et al. Distributed-satellite-clusters-based spectrum sensing with two-stage phase alignment. Sensors, 2022, 22(11): 3983
    [4] DING Xiaojin, ZOU Yulong, ZHANG Gengxin. Deep learning for satellites based spectrum sensing systems: a low computational complexity perspective[J]. IEEE Transations on Vehicular Technology, 2023, 72(1): 1366-1371 doi: 10.1109/TVT.2022.3211845
    [5] MORALES-FERRE Ruben, RICHTER Philipp, FALLETTI Emanuela, et al. A survey on coping with intentional interference in satellite navigation for manned and unmanned aircraft[J]. IEEE Comunications Surveys :Times New Roman;">& Tutorials, 2020, 22(1): 249-291
    [6] HAO Caiyong. Development and Trend of Satellite-based Radio Monitoring[J]. China Radio, 2022(12): 21-24 (郝才勇. 星载无线电监测发展现状与趋势[J]. 中国无线电, 2022(12): 21-24

    HAO Caiyong. Development and Trend of Satellite-based Radio Monitoring[J]. China Radio, 2022(12): 21-24
    [7] KULAKAYEVA Aigul, AITMAGAMBETOV Altay, DAINEKO Yevgeniya, et al. Improvement of signal reception reliability at satellite spectrum monitoring system[J]. IEEE Access, 2022, 10: 101399-101407 doi: 10.1109/ACCESS.2022.3206953
    [8] GUO Fucheng, FAN Yun, ZHOU Yiyu. Localization Principles in Space Electronic Reconnaissance[M]. Beijing: National Defence Industry Press, 2012 (郭福成, 樊昀, 周一宇等. 空间电子侦察定位原理[M]. 北京: 国防工业出版社, 2012

    GUO Fucheng, FAN Yun, ZHOU Yiyu. Localization Principles in Space Electronic Reconnaissance[M]. Beijing: National Defence Industry Press, 2012
    [9] HAO Caiyong, FENG Daquan, ZHANG Qinyu, et al. Satellite-based radio spectrum monitoring: architecture, applications, and challenges[J]. IEEE Network, 2021, 35(4): 20-27 doi: 10.1109/MNET.011.2100015
    [10] HO K C, CHAN Y T. Geolocation of a known altitude object from TDOA and FDOA measurements[J]. IEEE Transactions on Aerospace :Times New Roman;">& Electronic Systems, 1997, 33(3): 770-783
    [11] HO K C. Bias reduction for an explicit solution of source localization using TDOA[J]. IEEE Transactions on Signal Processing, 2012, 60(5): 2101-2114 doi: 10.1109/TSP.2012.2187283
    [12] CHEN Wanyu, CAI Fei, CHEN Honghui, et al. An intelligent information recommendation service for combat task planning[J]. Journal of Command and Control, 2023, 9(2): 175-181 (陈婉玉, 蔡飞, 陈红辉等. 面向作战任务规划的信息主动推荐服务[J]. 指挥与控制学报, 2023, 9(2): 175-181

    CHEN Wanyu, CAI Fei, CHEN Honghui, et al. An intelligent information recommendation service for combat task planning[J]. Journal of Command and Control, 2023, 9(2): 175-181
    [13] TAN Yuejin, LI Jufang, XU Yifan. Military task planning and control technology[J]. Military Operations Research amd Systems Engineering, 2010, 24(4): 23-28,60 (谭跃进, 李菊芳, 徐一帆. 军用任务规划与管控技术[J]. 军事运筹与系统工程, 2010, 24(4): 23-28,60

    TAN Yuejin, LI Jufang, XU Yifan. Military task planning and control technology[J]. Military Operations Research amd Systems Engineering, 2010, 24(4): 23-28,60
    [14] ZHU Jianghan, HUANG Wei. Mission planning for electronic reconnaissance satellites oriented the insertion of the new missions[J]. Fire Control :Times New Roman;">& Command Control, 36(7): 174-177 (祝江汉, 黄维. 面向新任务插入的电子侦察卫星任务规划方法[J]. 火力与指挥控制, 36(7): 174-177

    ZHU Jianghan, HUANG Wei. Mission planning for electronic reconnaissance satellites oriented the insertion of the new missions[J]. Fire Control & Command Control, 36(7): 174-177
    [15] LIU Gang, WANG Jianjiang, LI Zhimeng. The model of whole cycle mission planning for satellite observation[J]. Journal of National University of Defense Technology, 2013, 35(4): 62-66 (刘刚, 王建江, 李志猛. 卫星对地观测任务全周期规划模型[J]. 国防科技大学学报, 2013, 35(4): 62-66

    LIU Gang, WANG Jianjiang, LI Zhimeng. The model of whole cycle mission planning for satellite observation[J]. Journal of National University of Defense Technology, 2013, 35(4): 62-66
    [16] JIANG Xiao, XU Rui, ZHU Shengying. Research on task planning problems for deep space exploration[J]. Journal of Deep Space Exploration, 2018, 5(3): 262-268 (姜啸, 徐瑞, 朱胜英. 基于约束可满足的深空探测任务规划方法研究[J]. 深空探测学报, 2018, 5(3): 262-268

    JIANG Xiao, XU Rui, ZHU Shengying. Research on task planning problems for deep space exploration[J]. Journal of Deep Space Exploration, 2018, 5(3): 262-268
    [17] DU Yonghao. Research on the General-purpose Scheduling Engine for Satellite Task Scheduling Problems[D]. Changsha: National University of Defense Technology, 2021 (杜永浩. 面向任务调度问题的通用化调度引擎研究[D]. 长沙: 国防科技大学, 2021

    DU Yonghao. Research on the General-purpose Scheduling Engine for Satellite Task Scheduling Problems[D]. Changsha: National University of Defense Technology, 2021
    [18] XIA Rui, WANG Jingchao, DENG Boyu, et al. LEO Constellation-based electromagnetic monitoring intelligent processing framework and a review of key technologies[J]. Chinese Journal of Engineering, 2023, 45(5): 807-818 (夏瑞, 王敬超, 邓博于等. 低轨电磁频谱监测智能处理框架与关键技术综述[J]. 工程科学学报, 2023, 45(5): 807-818

    XIA Rui, WANG Jingchao, DENG Boyu, et al. LEO Constellation-based electromagnetic monitoring intelligent processing framework and a review of key technologies[J]. Chinese Journal of Engineering, 2023, 45(5): 807-818
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-07-30
  • 修回日期:  2024-12-23
  • 网络出版日期:  2025-12-03

目录

    /

    返回文章
    返回