面向空间探测应用的550 GHz频段砷化镓薄膜集成混频器技术
doi: 10.11728/cjss2025.06.2024-0162 cstr: 32142.14.cjss.2024-0162
550 GHz Band GaAs Thin-film Integrated Mixer Technology for Space Exploration Applications
-
摘要: 太赫兹固态肖特基谐波混频技术是空间天文、行星、大气探测的重要手段, 显然研究太赫兹单片集成谐波混频器具有重要意义. 本文克服了传统混合集成方法(即将分立的肖特基二极管与石英匹配电路胶接而成)存在的装配难、热效应不平衡、可靠性差等系列问题, 基于全自主国产砷化镓流片工艺线, 完成了550 GHz频段单片集成谐波混频器的研制与验证. 二极管设计方面, 建立精确的肖特基变阻管非线性和3D模型; 匹配电路方面, 采用典型的减高波导、高低阻抗悬置微带线(实现RF与LO信号的隔离)、矩形探针等结构, 结合场路分析方法, 实现最简化匹配电路设计; 整体电路含二极管对集成在3 μm厚的GaAs (Gallium Arsenide)薄膜上, 并通过两侧的梁氏引线实现与腔体的固定安装. 测试结果表明: 混频器模块在548~572 GHz单边带变频损耗优于13.4 dB, 并基于此结果实现了设计的反馈仿真研究.
-
关键词:
- 太赫兹 /
- 单片集成 /
- 谐波混频器 /
- 肖特基二极管 /
- 砷化镓(GaAs)薄膜
Abstract: The Terahertz (THz) frequency band offers unique application prospects in cutting-edge fields such as space exploration, planetary atmospheres, radio astronomy, and inter-satellite communications. THz solid-state Schottky harmonic mixing technology is a crucial technique that can down-convert THz signals to the microwave band for high-speed signal processing. It is evident that research on THz monolithic integrated harmonic mixers holds significant importance, as it effectively overcomes the inherent limitations of conventional hybrid integration approaches (e.g., epoxy-bonded discrete Schottky diodes with quartz matching circuits), including assembly complexity, thermal imbalance effects, and compromised reliability. Alternatively, the 550 GHz spectral band, as a molecular fingerprint region for water, plays an indispensable role in space-based detection applications. In this paper, the development and verification of a 550 GHz-band monolithic integrated harmonic mixer has been successfully completed based on a fully domestic GaAs foundry process line. The main technical contributions include: For diode design, building upon planar Schottky diode architectures developed by Jet Propulsion Laboratory (JPL) and France’s LERMA laboratory, the accurate nonlinear and 3D models of Schottky varactor diodes tailored to domestic fabrication processes are established. For matching circuit, it employs a canonical reduced-height waveguide coupled with high-low impedance suspended microstrip lines (for RF-LO isolation) and rectangular probe structures, achieving an optimized matching network through field-circuit co-simulation methodology. For monolithic integration, the complete frequency multiplier circuit, comprising diode pairs, matching networks, and probe structures, is monolithically integrated on a 3-μm-thick GaAs membrane with beam-lead interconnects on both sides, enabling robust cavity mounting. Test results demonstrate that the mixer module achieves a Single-Sideband (SSB) conversion loss of 11.7~13 dB across the 548~572 GHz RF frequency range, with a LO drive power of approximately 5 mW. Based on experimental characterization, this work systematically investigates the influence of series resistance Rs and zero-bias junction capacitance Cj0 variations on mixer performance, establishing a design feedback loop through correlated simulation-experimental analysis.-
Key words:
- Terahertz /
- Monolithic integrated /
- Harmonic mixer /
- Schottky diode /
- GaAs thin film
-
表 1 550 GHz频段混频电路肖特基二极管器件参数
Table 1. Parameters of Schottky diode in the 550 GHz mixer
$ {C}_{\mathrm{j}0}/\mathrm{f}\mathrm{F} $ $ {R}_{\mathrm{s}}/{\Omega } $ $ n $ $ {I}_{\mathrm{s}}/\mathrm{A} $ $ {V}_{\mathrm{j}}/\mathrm{V} $ 1.2 16 1.28 3 e-14 0.85 表 2 太赫兹混频器性能对比
Table 2. Performance comparison of Terahertz mixers
Ref. Frequency/GHz CL/dB Technology [4] 557 5.3~6.7 (DSB) Monolithic integrated [7] 433~451 14~17 (SSB) Hybrid integrated [8] 665~715 <16 (DSB) Hybrid integrated [16] 480~520 10.1~11.5 (DSB) Hybrid integrated [17] 540~580 7.5~9.5 (DSB) Hybrid integrated [18] 654~675 9~11 (DSB) Monolithic integrated [19] 520~590 8~9.5 (DSB) Monolithic integrated This work 548~572 11.7~13.4 (SSB) Monolithic integrated 注 SSB (Single Sideband)为单边带变频损耗, DSB (Double Sideband)为双边带变频损耗. -
[1] SIEGEL P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928 doi: 10.1109/22.989974 [2] RECK T, JUNG-KUBIAK C, SILES J V, et al. A silicon micromachined eight-pixel transceiver array for submillimeter-wave radar[J]. IEEE Transactions on Terahertz Science and Technology, 2015, 5(2): 197-206 [3] WANG Zhenzhan, WANG Wenyu, DONG Xiaolong, et al. Martian atmosphere study using THz limb sounder[J]. Chinese Journal of Space Science, 2021, 41(5): 778-786 (王振占, 王文煜, 董晓龙, 等. 太赫兹火星大气临边探测仿真研究[J]. 空间科学学报, 2021, 41(5): 778-786 doi: 10.11728/cjss2021.05.778WANG Zhenzhan, WANG Wenyu, DONG Xiaolong, et al. Martian atmosphere study using THz limb sounder[J]. Chinese Journal of Space Science, 2021, 41(5): 778-786 doi: 10.11728/cjss2021.05.778 [4] TREUTTEL J, GATILOVA L, MAESTRINI A, et al. A 520-620-GHz Schottky receiver front-end for planetary science and remote sensing with 1070 K-1500 K DSB noise temperature at room temperature[J]. IEEE Transactions on Terahertz Science and Technology, 2016, 6(1): 148-155 [5] TREUTTEL J, GATILOVA L, CAROOPEN S, et al. 1200 GHz high spectral resolution receiver front-end of submillimeter wave instrument for JUpiter ICy moon explorer: part I-RF performance optimization for cryogenic operation[J]. IEEE Transactions on Terahertz Science and Technology, 2023, 13(4): 324-336 doi: 10.1109/TTHZ.2023.3263623 [6] SILES J V, MAESTRINI A E, LEE C, et al. First demonstration of an all-solid-state room temperature 2-THz front end viable for space applications[J]. IEEE Transactions on Terahertz Science and Technology, 2024, 14(5): 607-612 doi: 10.1109/TTHZ.2024.3430013 [7] ZHAO Xin, JIANG Changhong, ZHANG Dehai, et al. Design of the 450 GHz sub-harmonic mixer based on Schottky diode[J]. Journal of Infrared and Millimeter Waves, 2015, 34(3): 301-306 (赵鑫, 蒋长宏, 张德海, 等. 基于肖特基二极管的450 GHz二次谐波混频器[J]. 红外与毫米波学报, 2015, 34(3): 301-306ZHAO Xin, JIANG Changhong, ZHANG Dehai, et al. Design of the 450 GHz sub-harmonic mixer based on Schottky diode[J]. Journal of Infrared and Millimeter Waves, 2015, 34(3): 301-306 [8] JIANG Jun, HE Yue, WANG Cheng, et al. 0.67 THz sub-harmonic mixer based on Schottky diode and hammer-head filter[J]. Journal of Infrared and Millimeter Waves, 2016, 35(4): 418-424 (蒋均, 何月, 王成, 等. 基于Schottky二极管和Hammer-Head滤波器0.67 THz二次谐波混频器[J]. 红外与毫米波学报, 2016, 35(4): 418-424JIANG Jun, HE Yue, WANG Cheng, et al. 0.67 THz sub-harmonic mixer based on Schottky diode and hammer-head filter[J]. Journal of Infrared and Millimeter Waves, 2016, 35(4): 418-424 [9] JI Dongfeng, DAI Kunpeng, WANG Weibo, et al. A 220 GHz~330 GHz sub-harmonic mixer based on planar Schottky diode[J]. Space Electronic Technology, 2024, 21(4): 71-76 (纪东峰, 代鲲鹏, 王维波, 等. 基于平面肖特基二极管的220 GHz~330 GHz分谐波混频器[J]. 空间电子技术, 2024, 21(4): 71-76JI Dongfeng, DAI Kunpeng, WANG Weibo, et al. A 220 GHz~330 GHz sub-harmonic mixer based on planar Schottky diode[J]. Space Electronic Technology, 2024, 21(4): 71-76 [10] LIU Siyu, ZHANG Dehai, MENG Jin, et al. 0.825 THz GaAs monolithic integrated sub-harmonic mixer[J]. Journal of Infrared and Millimeter Waves, 2021, 40(6): 749-753 (刘锶钰, 张德海, 孟进, 等. 0.825 THz砷化镓单片集成二次谐波混频器(英文)[J]. 红外与毫米波学报, 2021, 40(6): 749-753LIU Siyu, ZHANG Dehai, MENG Jin, et al. 0.825 THz GaAs monolithic integrated sub-harmonic mixer[J]. Journal of Infrared and Millimeter Waves, 2021, 40(6): 749-753 [11] MAESTRINI A, THOMAS B, WANG H, et al. Schottky diode-based terahertz frequency multipliers and mixers[J]. Comptes rendus - Physique 2010, 11(7-8): 480-495 [12] LIU Yi, ZHANG Bo, ZHANG Lisen, et al. 330 GHz GaAs monolithic integrated sub-harmonic mixer[J]. Journal of Infrared and Millimeter Waves, 2017, 36(2): 252-256 (刘戈, 张波, 张立森, 等. 330 GHz砷化镓单片集成分谐波混频器[J]. 红外与毫米波学报, 2017, 36(2): 252-256LIU Yi, ZHANG Bo, ZHANG Lisen, et al. 330 GHz GaAs monolithic integrated sub-harmonic mixer[J]. Journal of Infrared and Millimeter Waves, 2017, 36(2): 252-256 [13] YANG Dabao, ZHAO Xiangyang, LIU Bo, et al. 220 GHz GaAs monolithic integrated sub-harmonic mixer[J]. Semiconductor Technology, 2022, 47(11): 886-890 (杨大宝, 赵向阳, 刘波, 等. 220 GHz GaAs单片集成分谐波混频器[J]. 半导体技术, 2022, 47(11): 886-890YANG Dabao, ZHAO Xiangyang, LIU Bo, et al. 220 GHz GaAs monolithic integrated sub-harmonic mixer[J]. Semiconductor Technology, 2022, 47(11): 886-890 [14] MENG Jin, ZHANG Dehai, NIU Bin, et al. Design of a 1030 GHz mixer and a 750-1100 GHz tripler based on thin-film technology[J]. Journal of Infrared and Millimeter Waves, 2022, 41(5): 871-878 (孟进, 张德海, 牛斌, 等. 基于薄膜工艺的1030 GHz混频器和750~1100 GHz倍频器研制[J]. 红外与毫米波学报, 2022, 41(5): 871-878MENG Jin, ZHANG Dehai, NIU Bin, et al. Design of a 1030 GHz mixer and a 750-1100 GHz tripler based on thin-film technology[J]. Journal of Infrared and Millimeter Waves, 2022, 41(5): 871-878 [15] DING J Q, MAESTRINI A, GATILOVA L, et al. High efficiency and wideband 300 GHz frequency doubler based on six Schottky diodes[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38(11): 1331-1341 doi: 10.1007/s10762-017-0413-y [16] CUI J H, ZHANG Y, LI Y, et al. 500-GHz sub-harmonic mixer with integrated waveguide filters[J]. Infrared Physics :Times New Roman;">& Technology, 2022, 124: 104215 [17] ZHANG B, ZHANG Y, PAN L C, et al. A 560 GHz sub-harmonic mixer using half-global design method[J]. Electronics, 2021, 10(3): 234 doi: 10.3390/electronics10030234 [18] NIU Bin, QIAN Jun, FAN Daoyu, et al. 664 GHz sub harmonic mixer based on “T” anode GaAs SBD membrane circuit[J]. Journal of Infrared and Millimeter Waves, 2021, 40(5): 634-637 (牛斌, 钱骏, 范道雨, 等. 基于T形阳极GaAs肖特基二极管薄膜集成电路工艺的664 GHz次谐波混频器[J]. 红外与毫米波学报, 2021, 40(5): 634-637NIU Bin, QIAN Jun, FAN Daoyu, et al. 664 GHz sub harmonic mixer based on “T” anode GaAs SBD membrane circuit[J]. Journal of Infrared and Millimeter Waves, 2021, 40(5): 634-637 [19] SCHLECHT E T, GILL J J, LIN R H, et al. A 520-590 GHz crossbar balanced fundamental Schottky mixer[J]. IEEE Microwave and Wireless Components Letters, 2010, 20(7): 387-389 doi: 10.1109/LMWC.2010.2049432 -
-
丁江乔 男, 1987年出生于江苏省泰兴市, 现为南京信息工程大学电子与信息工程学院副教授, 硕士生导师, 主要研究方向为亚毫米波/太赫兹器件与技术, 固态有源收发电路, 空间探测技术等. E-mail:
陈思佳 女, 1998年出生于江苏省苏州市, 现为南京信息工程大学电子与信息工程学院硕士研究生, 主要研究方向为太赫兹器件、固态电路. E-mail:
下载: