留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向空间探测应用的550 GHz频段砷化镓薄膜集成混频器技术

丁江乔 陈思佳 朱皓天

丁江乔, 陈思佳, 朱皓天. 面向空间探测应用的550 GHz频段砷化镓薄膜集成混频器技术[J]. 空间科学学报. doi: 10.11728/cjss2025.06.2024-0162
引用本文: 丁江乔, 陈思佳, 朱皓天. 面向空间探测应用的550 GHz频段砷化镓薄膜集成混频器技术[J]. 空间科学学报. doi: 10.11728/cjss2025.06.2024-0162
DING Jiangqiao, CHEN Sijia, ZHU Haotian. 550 GHz Band GaAs Thin-film Integrated Mixer Technology for Space Exploration Applications (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1580-1587 doi: 10.11728/cjss2025.06.2024-0162
Citation: DING Jiangqiao, CHEN Sijia, ZHU Haotian. 550 GHz Band GaAs Thin-film Integrated Mixer Technology for Space Exploration Applications (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1580-1587 doi: 10.11728/cjss2025.06.2024-0162

面向空间探测应用的550 GHz频段砷化镓薄膜集成混频器技术

doi: 10.11728/cjss2025.06.2024-0162 cstr: 32142.14.cjss.2024-0162
基金项目: 民用航天预先研究项目(D010203)和国家自然科学基金项目(12003011, 62171432)共同资助
详细信息
    作者简介:
    • 丁江乔 男, 1987年出生于江苏省泰兴市, 现为南京信息工程大学电子与信息工程学院副教授, 硕士生导师, 主要研究方向为亚毫米波/太赫兹器件与技术, 固态有源收发电路, 空间探测技术等. E-mail: jqding@nuist.edu.cn
    • 陈思佳 女, 1998年出生于江苏省苏州市, 现为南京信息工程大学电子与信息工程学院硕士研究生, 主要研究方向为太赫兹器件、固态电路. E-mail: xiliu2333@163.com
    通讯作者:
    • 朱皓天 男, 1989年10月出生于江苏省南京市, 现为中国科学院国家空间科学中心研究员, 博士生导师, 主要研究方向为太赫兹科学与技术, 从事太赫兹星载辐射计系统及其关键技术研究. E-mail: zhuhaotian@nssc.ac.cn
  • 中图分类号: P356

550 GHz Band GaAs Thin-film Integrated Mixer Technology for Space Exploration Applications

  • 摘要: 太赫兹固态肖特基谐波混频技术是空间天文、行星、大气探测的重要手段, 显然研究太赫兹单片集成谐波混频器具有重要意义. 本文克服了传统混合集成方法(即将分立的肖特基二极管与石英匹配电路胶接而成)存在的装配难、热效应不平衡、可靠性差等系列问题, 基于全自主国产砷化镓流片工艺线, 完成了550 GHz频段单片集成谐波混频器的研制与验证. 二极管设计方面, 建立精确的肖特基变阻管非线性和3D模型; 匹配电路方面, 采用典型的减高波导、高低阻抗悬置微带线(实现RF与LO信号的隔离)、矩形探针等结构, 结合场路分析方法, 实现最简化匹配电路设计; 整体电路含二极管对集成在3 μm厚的GaAs (Gallium Arsenide)薄膜上, 并通过两侧的梁氏引线实现与腔体的固定安装. 测试结果表明: 混频器模块在548~572 GHz单边带变频损耗优于13.4 dB, 并基于此结果实现了设计的反馈仿真研究.

     

  • 图  1  二极管物理结构

    Figure  1.  Physical structure of diode

    图  2  混频器电路分解

    Figure  2.  Mixer circuit decomposition

    图  3  本振滤波单元

    Figure  3.  Local Oscillator (LO) filter unit

    图  4  550 GHz次谐波混频器仿真结果

    Figure  4.  Simulated results of the 550 GHz sub-harmonic mixer

    图  5  混频器芯片装配情况

    Figure  5.  Assembly diagram of frequency mixing chip

    图  6  混频器测试平台

    Figure  6.  Mixer test platform

    图  7  混频器测试结果及分析

    Figure  7.  Test results and analysis of mixer

    表  1  550 GHz频段混频电路肖特基二极管器件参数

    Table  1.   Parameters of Schottky diode in the 550 GHz mixer

    $ {C}_{\mathrm{j}0}/\mathrm{f}\mathrm{F} $ $ {R}_{\mathrm{s}}/{\Omega } $ $ n $ $ {I}_{\mathrm{s}}/\mathrm{A} $ $ {V}_{\mathrm{j}}/\mathrm{V} $
    1.2 16 1.28 3 e-14 0.85
    下载: 导出CSV

    表  2  太赫兹混频器性能对比

    Table  2.   Performance comparison of Terahertz mixers

    Ref. Frequency/GHz CL/dB Technology
    [4] 557 5.3~6.7 (DSB) Monolithic integrated
    [7] 433~451 14~17 (SSB) Hybrid integrated
    [8] 665~715 <16 (DSB) Hybrid integrated
    [16] 480~520 10.1~11.5 (DSB) Hybrid integrated
    [17] 540~580 7.5~9.5 (DSB) Hybrid integrated
    [18] 654~675 9~11 (DSB) Monolithic integrated
    [19] 520~590 8~9.5 (DSB) Monolithic integrated
    This work 548~572 11.7~13.4 (SSB) Monolithic integrated
      SSB (Single Sideband)为单边带变频损耗, DSB (Double Sideband)为双边带变频损耗.
    下载: 导出CSV
  • [1] SIEGEL P H. Terahertz technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910-928 doi: 10.1109/22.989974
    [2] RECK T, JUNG-KUBIAK C, SILES J V, et al. A silicon micromachined eight-pixel transceiver array for submillimeter-wave radar[J]. IEEE Transactions on Terahertz Science and Technology, 2015, 5(2): 197-206
    [3] WANG Zhenzhan, WANG Wenyu, DONG Xiaolong, et al. Martian atmosphere study using THz limb sounder[J]. Chinese Journal of Space Science, 2021, 41(5): 778-786 (王振占, 王文煜, 董晓龙, 等. 太赫兹火星大气临边探测仿真研究[J]. 空间科学学报, 2021, 41(5): 778-786 doi: 10.11728/cjss2021.05.778

    WANG Zhenzhan, WANG Wenyu, DONG Xiaolong, et al. Martian atmosphere study using THz limb sounder[J]. Chinese Journal of Space Science, 2021, 41(5): 778-786 doi: 10.11728/cjss2021.05.778
    [4] TREUTTEL J, GATILOVA L, MAESTRINI A, et al. A 520-620-GHz Schottky receiver front-end for planetary science and remote sensing with 1070 K-1500 K DSB noise temperature at room temperature[J]. IEEE Transactions on Terahertz Science and Technology, 2016, 6(1): 148-155
    [5] TREUTTEL J, GATILOVA L, CAROOPEN S, et al. 1200 GHz high spectral resolution receiver front-end of submillimeter wave instrument for JUpiter ICy moon explorer: part I-RF performance optimization for cryogenic operation[J]. IEEE Transactions on Terahertz Science and Technology, 2023, 13(4): 324-336 doi: 10.1109/TTHZ.2023.3263623
    [6] SILES J V, MAESTRINI A E, LEE C, et al. First demonstration of an all-solid-state room temperature 2-THz front end viable for space applications[J]. IEEE Transactions on Terahertz Science and Technology, 2024, 14(5): 607-612 doi: 10.1109/TTHZ.2024.3430013
    [7] ZHAO Xin, JIANG Changhong, ZHANG Dehai, et al. Design of the 450 GHz sub-harmonic mixer based on Schottky diode[J]. Journal of Infrared and Millimeter Waves, 2015, 34(3): 301-306 (赵鑫, 蒋长宏, 张德海, 等. 基于肖特基二极管的450 GHz二次谐波混频器[J]. 红外与毫米波学报, 2015, 34(3): 301-306

    ZHAO Xin, JIANG Changhong, ZHANG Dehai, et al. Design of the 450 GHz sub-harmonic mixer based on Schottky diode[J]. Journal of Infrared and Millimeter Waves, 2015, 34(3): 301-306
    [8] JIANG Jun, HE Yue, WANG Cheng, et al. 0.67 THz sub-harmonic mixer based on Schottky diode and hammer-head filter[J]. Journal of Infrared and Millimeter Waves, 2016, 35(4): 418-424 (蒋均, 何月, 王成, 等. 基于Schottky二极管和Hammer-Head滤波器0.67 THz二次谐波混频器[J]. 红外与毫米波学报, 2016, 35(4): 418-424

    JIANG Jun, HE Yue, WANG Cheng, et al. 0.67 THz sub-harmonic mixer based on Schottky diode and hammer-head filter[J]. Journal of Infrared and Millimeter Waves, 2016, 35(4): 418-424
    [9] JI Dongfeng, DAI Kunpeng, WANG Weibo, et al. A 220 GHz~330 GHz sub-harmonic mixer based on planar Schottky diode[J]. Space Electronic Technology, 2024, 21(4): 71-76 (纪东峰, 代鲲鹏, 王维波, 等. 基于平面肖特基二极管的220 GHz~330 GHz分谐波混频器[J]. 空间电子技术, 2024, 21(4): 71-76

    JI Dongfeng, DAI Kunpeng, WANG Weibo, et al. A 220 GHz~330 GHz sub-harmonic mixer based on planar Schottky diode[J]. Space Electronic Technology, 2024, 21(4): 71-76
    [10] LIU Siyu, ZHANG Dehai, MENG Jin, et al. 0.825 THz GaAs monolithic integrated sub-harmonic mixer[J]. Journal of Infrared and Millimeter Waves, 2021, 40(6): 749-753 (刘锶钰, 张德海, 孟进, 等. 0.825 THz砷化镓单片集成二次谐波混频器(英文)[J]. 红外与毫米波学报, 2021, 40(6): 749-753

    LIU Siyu, ZHANG Dehai, MENG Jin, et al. 0.825 THz GaAs monolithic integrated sub-harmonic mixer[J]. Journal of Infrared and Millimeter Waves, 2021, 40(6): 749-753
    [11] MAESTRINI A, THOMAS B, WANG H, et al. Schottky diode-based terahertz frequency multipliers and mixers[J]. Comptes rendus - Physique 2010, 11(7-8): 480-495
    [12] LIU Yi, ZHANG Bo, ZHANG Lisen, et al. 330 GHz GaAs monolithic integrated sub-harmonic mixer[J]. Journal of Infrared and Millimeter Waves, 2017, 36(2): 252-256 (刘戈, 张波, 张立森, 等. 330 GHz砷化镓单片集成分谐波混频器[J]. 红外与毫米波学报, 2017, 36(2): 252-256

    LIU Yi, ZHANG Bo, ZHANG Lisen, et al. 330 GHz GaAs monolithic integrated sub-harmonic mixer[J]. Journal of Infrared and Millimeter Waves, 2017, 36(2): 252-256
    [13] YANG Dabao, ZHAO Xiangyang, LIU Bo, et al. 220 GHz GaAs monolithic integrated sub-harmonic mixer[J]. Semiconductor Technology, 2022, 47(11): 886-890 (杨大宝, 赵向阳, 刘波, 等. 220 GHz GaAs单片集成分谐波混频器[J]. 半导体技术, 2022, 47(11): 886-890

    YANG Dabao, ZHAO Xiangyang, LIU Bo, et al. 220 GHz GaAs monolithic integrated sub-harmonic mixer[J]. Semiconductor Technology, 2022, 47(11): 886-890
    [14] MENG Jin, ZHANG Dehai, NIU Bin, et al. Design of a 1030 GHz mixer and a 750-1100 GHz tripler based on thin-film technology[J]. Journal of Infrared and Millimeter Waves, 2022, 41(5): 871-878 (孟进, 张德海, 牛斌, 等. 基于薄膜工艺的1030 GHz混频器和750~1100 GHz倍频器研制[J]. 红外与毫米波学报, 2022, 41(5): 871-878

    MENG Jin, ZHANG Dehai, NIU Bin, et al. Design of a 1030 GHz mixer and a 750-1100 GHz tripler based on thin-film technology[J]. Journal of Infrared and Millimeter Waves, 2022, 41(5): 871-878
    [15] DING J Q, MAESTRINI A, GATILOVA L, et al. High efficiency and wideband 300 GHz frequency doubler based on six Schottky diodes[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38(11): 1331-1341 doi: 10.1007/s10762-017-0413-y
    [16] CUI J H, ZHANG Y, LI Y, et al. 500-GHz sub-harmonic mixer with integrated waveguide filters[J]. Infrared Physics :Times New Roman;">& Technology, 2022, 124: 104215
    [17] ZHANG B, ZHANG Y, PAN L C, et al. A 560 GHz sub-harmonic mixer using half-global design method[J]. Electronics, 2021, 10(3): 234 doi: 10.3390/electronics10030234
    [18] NIU Bin, QIAN Jun, FAN Daoyu, et al. 664 GHz sub harmonic mixer based on “T” anode GaAs SBD membrane circuit[J]. Journal of Infrared and Millimeter Waves, 2021, 40(5): 634-637 (牛斌, 钱骏, 范道雨, 等. 基于T形阳极GaAs肖特基二极管薄膜集成电路工艺的664 GHz次谐波混频器[J]. 红外与毫米波学报, 2021, 40(5): 634-637

    NIU Bin, QIAN Jun, FAN Daoyu, et al. 664 GHz sub harmonic mixer based on “T” anode GaAs SBD membrane circuit[J]. Journal of Infrared and Millimeter Waves, 2021, 40(5): 634-637
    [19] SCHLECHT E T, GILL J J, LIN R H, et al. A 520-590 GHz crossbar balanced fundamental Schottky mixer[J]. IEEE Microwave and Wireless Components Letters, 2010, 20(7): 387-389 doi: 10.1109/LMWC.2010.2049432
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  545
  • HTML全文浏览量:  183
  • PDF下载量:  11
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-11-15
  • 修回日期:  2025-04-03
  • 网络出版日期:  2025-04-07

目录

    /

    返回文章
    返回