留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Na6Mo11O36材料X射线微观结构图像的分割算法

李欣泽 蔡宇佳 于强

李欣泽, 蔡宇佳, 于强. Na6Mo11O36材料X射线微观结构图像的分割算法[J]. 空间科学学报. doi: 10.11728/cjss2025.06.2024-0185
引用本文: 李欣泽, 蔡宇佳, 于强. Na6Mo11O36材料X射线微观结构图像的分割算法[J]. 空间科学学报. doi: 10.11728/cjss2025.06.2024-0185
LI Xinze, CAI Yujia, YU Qiang. Segmentation Algorithm of X-ray Microstructure Image of Na6Mo11O36 Material (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1532-1541 doi: 10.11728/cjss2025.06.2024-0185
Citation: LI Xinze, CAI Yujia, YU Qiang. Segmentation Algorithm of X-ray Microstructure Image of Na6Mo11O36 Material (in Chinese). Chinese Journal of Space Science, 2025, 45(6): 1532-1541 doi: 10.11728/cjss2025.06.2024-0185

Na6Mo11O36材料X射线微观结构图像的分割算法

doi: 10.11728/cjss2025.06.2024-0185 cstr: 32142.14.cjss.2024-0185
基金项目: 广西重点研发计划项目(AB22035048, AB23026105), 桂林市重大专项(20220103-1), 广西科技基地和人才专项项目(AD24010012), 和中国载人航天项目(YYMT1201-EXP02)共同资助
详细信息
    作者简介:
    • 李欣泽 女, 2000年8月出生于广西南宁市, 现为中国科学院大学硕士研究生, 主要研究方向为图像对比度增强、图像分割. E-mail: lixinze221@mails.ucas.ac.cn
    通讯作者:
    • 于强 男, 1965年出生于陕西宝鸡, 现为中国科学院国家空间科学中心博士生导师, 主要研究方向为空间科学实验技术、计算机应用技术、软件工程、人工智能等. E-mail: yuqiang@nssc.ac.cn
  • 中图分类号: V45

Segmentation Algorithm of X-ray Microstructure Image of Na6Mo11O36 Material

  • 摘要: 在微重力环境下进行材料科学实验可以消除重力对材料实验过程的干扰, 揭示材料生长过程的本征规律, 获得具有更高性能的材料. 中国空间站高温材料科学实验柜配备了X射线透射成像模块, 能够实现在微重力条件下对材料凝固过程的实时成像和观察. 受空间站实验条件等因素的限制, X射线透射成像模块拍摄到的材料X射线图像模糊不清, 图像中的微观结构难以直接观察. 本文提出了一种专门针对 Na6Mo11O36材料凝固过程中生成的微观结构图像而设计的分割算法GFF-UNet++, 并从图像分割性能及材料科学两个方面对GFF-UNet++算法进行全面评估. 实验结果表明, 相比UNet, UNet++, DC-UNet, UNet3+, Pretrained-Microscopy-Models等图像分割算法, GFF-UNet++在图像分割任务中的各项图像分割指标上均有明显提升, 能够更准确分割出Na6Mo11O36材料在生长过程中形成的微观结构. 这为材料的微观结构分割研究提供了新的思路和方法, 具有重要应用价值.

     

  • 图  1  X射线透射成像模块结构与工作原理

    Figure  1.  Structure and schematic of X-ray transmission imaging module

    图  2  Na6Mo11O36实验过程X射线图像的条状微观结构变化

    Figure  2.  Strip microstructure change of X-ray images of Na6Mo11O36 experimental process

    图  3  GFF-UNet++网络结构

    Figure  3.  Structure diagram of the GFF-UNet++ network

    图  4  GFF模块工作原理

    Figure  4.  Schematic diagram of the GFF module

    图  5  具有GFF模块构造的GFF-UNet++编码器

    Figure  5.  Schematic diagram of the GFF-UNet++ encoder with the construction of the GFF module

    图  6  训练损失和验证损失随训练次数的变化

    Figure  6.  Variation of training loss and validation loss with a number of iterations

    图  7  不同模型对Na6Mo11O36的X射线图像条状微观结构分割综合性能的定性比较

    Figure  7.  Qualitative comparison of the comprehensive performance of different models in segmenting the striped microstructure of Na6Mo11O36 X-ray images

    表  1  本实验中混淆矩阵的构建方法

    Table  1.   Construction method of the confusion matrix in this experiment

    混淆矩阵预测结果
    条状微观结构背景
    真实标签条状微观结构TPFN
    背景FPTN
    下载: 导出CSV

    表  2  图像分割评价指标

    Table  2.   Image segmentation evaluation index

    Architecture Evaluation index
    Accuracy Recall Precision Dice IOU
    UNet 0.822 0.790 0.982 0.868 0.835
    UNet++ 0.813 0.788 0.988 0.834 0.822
    DC-UNet 0.850 0.776 0.978 0.842 0.849
    UNet3+ 0.867 0.851 0.990 0.877 0.882
    PMM 0.880 0.833 0.983 0.906 0.870
    GFF-UNet++ 0.898 0.885 0.993 0.894 0.901
      粗体数值表示每列在所述指标下的最优结果.
    下载: 导出CSV
  • [1] WANG Y, LI S, LIU Z, et al. Anisotropy-dependent seaweed growth during directional solidification of Al-4.5%Cu single crystal[J]. Scripta Materialia, 2020, 186: 121-126 doi: 10.1016/j.scriptamat.2020.05.006
    [2] AGHALARI M, AGHAGOLZADEH A, EZOJI M. Brain tumor image segmentation via asymmetric/symmetric UNet based on two-pathway-residual blocks[J]. Biomedical Signal Processing and Control, 2021, 69(6): 102841
    [3] WANG E K, CHEN C-M, HASSAN M M, et al. A deep learning based medical image segmentation technique in Internet-of-Medical-Things domain[J]. Future Generation Computer Systems, 2020, 108: 135-144 doi: 10.1016/j.future.2020.02.054
    [4] HUANG H, LIN L, TONG R, et al. UNet 3+: A full-scale connected UNet for medical image segmentation[C]// 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Barcelona, Spain: IEEE, 2020: 1055-1059
    [5] SONG Y, QU Z, LIAO H, et al. Material twins generation of woven polymer composites based on ResL-U-Net convolutional neural networks[J]. Composite Structures, 2023, 307: 116672 doi: 10.1016/j.compstruct.2023.116672
    [6] GUAN Y, PANG Z, SUN H, et al. Material strain image segmentation algorithm based on improved UNET network; proceedings of the 9th International Symposium on Test Automation & Instrumentation (ISTAI 2022), F 11-13 Nov. 2022, 2022 [C]
    [7] SHI P, DUAN M M, YANG L F, et al. An improved U-Net image segmentation method and its application for metallic grain size statistics[J]. MATERIALS, 2022, 15(13)
    [8] STUCKNER J, HARDER B, SMITH T M. Microstructure segmentation with deep learning encoders pre-trained on a large microscopy dataset[J]. NPJ Computational Materials, 2022, 8(1): 200 doi: 10.1038/s41524-022-00878-5
    [9] IBTEHAZ N, RAHMAN M S. MultiResUNet : Rethinking the U-Net architecture for multimodal biomedical image segmentation[J]. Neural Networks, 2019, 121: 74-87
    [10] GAO WEIZE, CHEN SHANXIONG, MO BOFENG, et al. R-UNet++: a local segmentation network for the classification of oracle bone materials[J]. Journal of Computer-Aided Design :Times New Roman;">& Computer Graphics, 2022, 34(3): 415-424
    [11] HIRABAYASHI Y, IGA H, OGAWA H, et al. Deep learning for three-dimensional segmentation of electron microscopy images of complex ceramic materials[J]. NPJ Computational Materials, 2024, 10(1): 46 doi: 10.1038/s41524-024-01226-5
    [12] HORWATH J P, ZAKHAROV D N, MéGRET R, et al. Understanding important features of deep learning models for segmentation of high-resolution transmission electron microscopy images[J]. NPJ Computational Materials, 2020, 6(1): 108 doi: 10.1038/s41524-020-00363-x
    [13] YANG B, WU M, TEIZER W. Modified UNet++ with attention gate for graphene identification by optical microscopy[J]. Carbon: An International Journal Sponsored by the American Carbon Society, 2022, 195: 246-252
    [14] LIU P, SONG Y, CHAI M, et al. Swin–UNet++: a nested swin transformer architecture for location identification and morphology segmentation of dimples on 2.25Cr1Mo0.25V fractured surface[J]. Materials, 2021, 14(24): 7504 doi: 10.3390/ma14247504
    [15] SHU K Y, CHEN Z X, ZHU B, et al. Unsupervised Segmentation for Microstructure Identification of High Strength Steel with Superpixel Segmentation and Texture Feature Clustering; proceedings of the Proceedings of the 14th International Conference on the Technology of Plasticity - Current Trends in the Technology of Plasticity, Cham, F 2024//, 2024 [C]. Springer Nature Switzerland
    [16] RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[J]. Springer, Cham, 2015. DOI: 10.1007/978-3-662-54345-0_3
    [17] ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. Unet++: a nested U-Net architecture for medical image segmentation[J]. 2018. DOI: 10.1007/978-3-030-00889-5_1
    [18] RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation; proceedings of the medical image computing and computer-assisted intervention–MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceedings, part III 18, F, 2015 [C]. Springer
    [19] ZHOU Z, RAHMAN SIDDIQUEE M M, TAJBAKHSH N, et al. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. [C]//proceedings of the Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Cham, F 2018. Springer International Publishing. DOI: 10.1007/978-3-030-00889-5_1
    [20] LOU A, GUAN S, LOEW M H. DC-UNet: rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation[J]. Proceedings of SPIE, 2021, 11596(000). DOI: 10.1117/12.2582338
    [21] HUANG H, LIN L, TONG R, et al. UNet 3+: a full-scale connected UNet for medical image segmentation[J]. arXiv, 2020. DOI: 10.1109/ICASSP40776.2020.9053405
    [22] ISENSEE F, JAEGER P F, KOHL S A A, et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation[J]. Nature Methods, 2021, 18(2): 203-211 doi: 10.1038/s41592-020-01008-z
    [23] LOU A, GUAN S, LOEW M. DC-UNet: rethinking the U-Net architecture with dual channel efficient CNN for medical image segmentation[C]//Image Processing. SPIE, 2021. DOI: 10.1117/12.2582338
    [24] HUANG H, LIN L, TONG R, et al. Unet 3+: a full-scale connected unet for medical image segmentation[J]. arXiv, 2020. DOI: 10.1109/ICASSP40776.2020.9053405
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  31
  • PDF下载量:  10
  • 被引次数: 

    0(来源:Crossref)

    0(来源:其他)

出版历程
  • 收稿日期:  2024-12-13
  • 修回日期:  2025-05-13
  • 网络出版日期:  2025-05-15

目录

    /

    返回文章
    返回